http://iet.metastore.ingenta.com
1887

Low-voltage commercial super-capacitor response to periodic linear-with-time current excitation: a case study

Low-voltage commercial super-capacitor response to periodic linear-with-time current excitation: a case study

For access to this article, please select a purchase option:

Buy article PDF
£12.50
(plus tax if applicable)
Buy Knowledge Pack
10 articles for £75.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
IET Circuits, Devices & Systems — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

The response of a commercial super-capacitor to an applied periodic current excitation in the form of a triangular waveform is investigated in this study. This waveform has a linear-with-time variation which enables linear charging and discharging of the device. A model consisting of a linear resistance R s and a constant phase element is used to describe the super-capacitor impedance and expressions for the voltage across the device, the power, and stored energy are derived using concepts from fractional calculus. Experimental results are shown and an application of the study to super-capacitor parameter extraction is described.

References

    1. 1)
      • 1. Decker, A.: ‘Solar energy harvesting for autonomous field devices’, IET Wirel. Sens. Syst., 2014, 4, (1), pp. 18.
    2. 2)
      • 2. Jayasinghe, S.D., Vilathgamuwa, D.M.: ‘Flying super-capacitors as power smoothing elements in wind generation’, IEEE Trans. Ind. Electron., 2013, 60, (7), pp. 29092918.
    3. 3)
      • 3. Pegueroles-Queralt, J., Bianchi, F.D., Gomis-Bellmunt, O.: ‘A power smoothing system based on super-capacitors for renewable distributed generation’, IEEE Trans. Ind. Electron., 2014, 62, (1), pp. 343350.
    4. 4)
      • 4. Tianpei, Z., Sun, W.: ‘Optimization of battery-supercapacitor hybrid energy storage station in wind/solar generation system’, IEEE Trans. Sustain. Energy, 2014, 5, (2), pp. 408415.
    5. 5)
      • 5. Brando, G., Dannier, A., Del Pizzo, A., et al: ‘Grid connection of wave energy converter in heaving mode operation by supercapacitor storage technology’, IET Renew. Power Gener., 2016, 10, (1), pp. 8897.
    6. 6)
      • 6. Cao, J., Emadi, A.: ‘A new battery/ultracapacitor hybrid energy storage system for electric, hybrid, and plug-in hybrid electric vehicles’, IEEE Trans. Power Electron., 2012, 27, (1), pp. 122132.
    7. 7)
      • 7. Castaings, A., Lhomme, W., Trigui, R., et al: ‘Practical control schemes of a battery/supercapacitor system for electric vehicle’, IET Electr. Syst. Transp., 2016, 6, pp. 2026.
    8. 8)
      • 8. Lahyani, A., Venet, P., Guermazi, A., et al: ‘Battery/supercapacitors combination in interruptible power supply (UPS)’, IEEE Trans. Power Electron., 2013, 28, (4), pp. 15091522.
    9. 9)
      • 9. Kankanamge, K., Kularatna, N., Steyn-Ross, D.A.: ‘Laplace transform-based theoretical foundations and experimental validation: low-frequency supercapacitor circulation for efficiency improvements in linear regulators’, IET Power Electron., 2012, 5, pp. 17851792.
    10. 10)
      • 10. Kim, S., No, K., Chou, P.H.: ‘Design and performance analysis of supercapacitor charging circuits for wireless sensor nodes’, IEEE J. Emerging Sel. Top. Circuits Syst., 2011, 1, (3), pp. 391402.
    11. 11)
      • 11. Pandey, A., Allos, F., Hu, A.P., et al: ‘Integration of supercapacitors into wirelessly charged biomedical sensors’. Proc. IEEE Conf. Industrial Electronics and Applications, Beijing, China, June 2011, pp. 5661.
    12. 12)
      • 12. Davis, A.K., Gunasekaran, M.K.: ‘Microprocessor-conducted noise reduction with switched supercapacitors’, Electron. Lett, 2015, 51, (1), pp. 9294.
    13. 13)
      • 13. Podlubny, I.: ‘Fractional differential equations’ (Academic Press, San Diego, 1999).
    14. 14)
      • 14. Freeborn, T.J., Maundy, B., Elwakil, A.S.: ‘Field programmable analogue array implementation of fractional step filters’, IET Circuits Devices Syst.., 2010, 4, (6), pp. 514524.
    15. 15)
      • 15. Radwan, A.G., Fouda, M.E.: ‘Optimization of fractional-order RLC filters’, Circuits Syst. Signal Process., 2013, 32, (5), pp. 20972118.
    16. 16)
      • 16. Fouda, M.E., Elwakil, A.S., Radwan, A.G., et al: ‘Fractional-order two-port networks’, Math. Probl. Eng., 2016, pp. 15, doi: 10.1155/2016/5976301, Article ID 5976301.
    17. 17)
      • 17. Psychalinos, C., Elwakil, A.S., Radwan, A.G., et al: ‘Guest editorial: fractional-order circuits and systems: theory, design, and applications’, Circuits Syst. Signal Process., 2016, 35, (6), pp. 18071813.
    18. 18)
      • 18. Bertrand, N., Sabatier, J., Briat, O., et al: ‘Fractional non-linear modelling of ultracapacitors’, Commun. Nonlinear Sci. Numer. Simul., 2010, 15, (5), pp. 13271337.
    19. 19)
      • 19. Dzieliński, A., Sarwas, G., Sierociuk, D.: ‘Comparison and validation of integer and fractional order ultracapacitor models’, Adv. Differ. Equ., 2011, pp. 115, doi: 10.1186/1687-1847-2011-11.
    20. 20)
      • 20. Freeborn, T.J., Maundy, B., Elwakil, A.S.: ‘Measurement of supercapacitor fractional-order model parameters from voltage-excited step response’, IEEE J. Emerging Sel. Top. Circuits Syst., 2013, 3, (3), pp. 367376.
    21. 21)
      • 21. Kotz, R., Carlen, M.: ‘Principles and applications of electrochemical capacitors’, Electrochim. Acta, 2000, 45, (15–16), pp. 24832498.
    22. 22)
      • 22. Mahon, P.J., Paul, G.L., Keshishian, S.M., et al: ‘Measurement and modeling of the higher-power performance of carbon-based super-capacitors’, J. Power Sources, 2000, 91, (1), pp. 6876.
    23. 23)
      • 23. Freeborn, T.J., Elwakil, A.S., Maundy, B.J.: ‘Fractional-order models of supercapacitors, batteries and fuel cells: a survey’, Mater. Renew. Sustain. Energy, 2015, 4, (3), pp. 17.
    24. 24)
      • 24. Martynyuk, V., Ortigueira, M.: ‘Fractional model of an electrochemical capacitor’, Signal Process., 2015, 107, (2), pp. 355360.
    25. 25)
      • 25. Freeborn, T.J., Maundy, B.J., Elwakil, A.S.: ‘Accurate time domain extraction of super-capacitor fractional-order model parameters’. Proc. IEEE Int. Symp. Circuits Systems, Beijing, China, May 2013, pp. 22592262.
    26. 26)
      • 26. Kushnerov, A., Bukashev, F.: ‘On power losses in switched supercapacitor circuits’. Proc. Int. Power Electronics and Motion Control Conf. and Exposition, Antalya, Turkey, September 2014, pp. 11021105.
    27. 27)
      • 27. Hartley, T., Veillette, R.J., Adams, J., et al: ‘Energy storage and loss in fractional-order circuit elements’, IET Circuits Devices Syst.., 2015, 9, (3), pp. 227235.
    28. 28)
      • 28. Tsirimokou, G., Psychalinos, C., Elwakil, A.S., et al: ‘Simple non-impedance-based measuring technique for supercapacitors’, Electron. Lett., 2015, 51, (21), pp. 16991701.
    29. 29)
      • 29. Maundy, B., Elwakil, A.S., Freeborn, T.J., et al: ‘Determination of supercapacitor metrics using a magnitude-only method’. Proc. IEEE Int. Symp. Circuits Systems, Montreal, Canada, May 2016, pp. 11861189.
    30. 30)
      • 30. Radwan, A.G., Elwakil, A.S.: ‘Transient-time fractional-space trigonometry and application’, in Huang, T., Zeng, Z., Li, C., et al (EDs.): ‘Springer lecture notes in computer science’ (Springer Berlin Heidelberg, Berlin, 2012), vol. 7663, pp. 4047.
    31. 31)
      • 31. Fouda, M., Radwan, A.G., Elwakil, A.S., et al: ‘Power and energy analysis of fractional-order energy storage devices’, Energy, 2016, 111, pp. 785792.
    32. 32)
      • 32. Hirschorn, B., Orazem, M.E., Tribollet, B., et al: ‘Determination of effective capacitance and film thickness from constant-phase-element parameters’, Electrochem. Acta, 2010, 55, pp. 62186227.
    33. 33)
      • 33. Van Westing, E.: ‘Determination of coating performance with impedance measurements’. PhD thesis, Technical University of Delft, The Netherlands, 1992.
    34. 34)
      • 34. Hsu, C.H., Mansfeld, F.: ‘Technical note: concerning the conversion of the constant phase element parameter Y0 into a capacitance’, Corrosion, 2001, 57, (9), pp. 747748.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-cds.2016.0139
Loading

Related content

content/journals/10.1049/iet-cds.2016.0139
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address