Your browser does not support JavaScript!
http://iet.metastore.ingenta.com
1887

access icon free Theoretical and experimental characterisation of a SAW delay line through its Y-matrix

Surface acoustic wave (SAW) delay lines are commonly used devices, and it is important to characterise them to find the causes of deviations between the experimental and theoretical behaviour in order to consider them during design. The authors present the theoretical characteristics and the characterisation of a SAW delay line through X-ray diffraction, energy dispersive X-ray fluorescence, scanning electron microscopy, atomic force microscopy and the measurement of S-parameters. Using the S-parameters, the Y-parameters were calculated and comparing them with those obtained theoretically, they found disagreement in their magnitudes and also that the experimental SAW velocity was 2.8% larger than the theoretical one. The magnitude of experimental Y11 is smaller than that obtained theoretically because of the ill-defined profile and the metallisation ratio of the electrodes is not ideal due to inherent limitations in the fabrication process, and besides Y21 is smaller than expected because the attenuation of the SAW when it propagates through the delay line. When the electrode defects, the experimental SAW velocity and the attenuation coefficient of SAW in this material are considered in the theoretical calculations, agreement is found between theoretical and experimental results. This procedure is based in the comparison between experimental and theoretical Y-parameters and could be used to estimate attenuation, electrode capacitance and SAW velocity.

References

    1. 1)
    2. 2)
      • 8. Drafts, B.: ‘Acoustic wave technology sensors’, IEEE Trans. Microw. Theory, 2001, 4, (795-802), p. 49.
    3. 3)
    4. 4)
    5. 5)
      • 30. www.sawcomponents.de.
    6. 6)
    7. 7)
      • 36. Suthers, M., Este, G., Streater, R., et al: ‘Suppression of spurious SAW signals’. IEEE Ultrason Symp., 1986, pp. 3742.
    8. 8)
      • 2. Williamson, R.C.: ‘Case studies of successful surface acoustic wave devices’. IEEE Ultrason. Symp. Proc., 1977, pp. 460468.
    9. 9)
      • 24. Hashimoto, K.Y.: ‘Surface acoustic wave devices in telecomunications: Modelling and simulation’ (Springer, Germany, 2000).
    10. 10)
    11. 11)
      • 37. DiBenedetto, E.: ‘Real analysis’ (Springer Science, New York, 2002).
    12. 12)
    13. 13)
    14. 14)
    15. 15)
      • 33. Pozar, D.M.: ‘Microwave engineering’ (John Wiley & Sons, New York, 1998).
    16. 16)
    17. 17)
      • 4. Morgan, D.P.: ‘Surface acoustic wave filters with applications to electronic communications and signal processing’ (Academic Press, UK, 2007).
    18. 18)
      • 29. Abbot, B.P., Hartmann, C.S., Malocha, D.C.: ‘A coupling-of-modes analysis of chirped transducers containing reflective electrode geometries’. IEEE Ultrason Symp., 1989, pp. 129134.
    19. 19)
    20. 20)
      • 13. Dransfeld, K., Salzmann, E.: ‘Excitation, detection and attenuation of high-frequency elastic waves’, in Mason, W.P., Thurston, R.N. (Eds.): ‘Physical acoustics’ (Academic Press, 1970), vol. 7, pp. 219272.
    21. 21)
    22. 22)
    23. 23)
    24. 24)
    25. 25)
      • 26. Guerra-Pulido, J.O.: ‘Estudio de un microacelerómetro realimentado con actuación electrostática y transducción SAW’. PhD thesis, National Autonomous University of Mexico, Mexico city, 2014.
    26. 26)
      • 10. Yeo, L.Y., Friend, J.R.: ‘Ultrafast microfluidics using surface acoustic waves’, Biomicrofluidics, 2009, 3, (012002), p. 23.
    27. 27)
      • 27. Guerra-Pulido, J.O.: ‘Estudio de un microacelerómetro realimentado con actuación electrostática y transducción SAW’ (Colección Ciencia Nueva – UNAM, Mexico City, 2014).
    28. 28)
      • 5. Campbell, C.: ‘Surface acoustic wave devices for mobile and wireless communications’ (Academic, San Diego, 1998).
    29. 29)
    30. 30)
    31. 31)
    32. 32)
    33. 33)
      • 32. Makkonen, T., Plessky, V.P., Kondratiev, S., et al: ‘Electromagnetic modeling of package parasitics in SAW-duplexer’. IEEE Ultrason Symp., 1996, pp. 2932.
    34. 34)
    35. 35)
      • 25. Guerra-Pulido, J.O., Pérez-Alcázar, P.R.: ‘Generalised relations between P- and Y-matrices and their applications’, IET JoE, 2014, p. 8.
    36. 36)
    37. 37)
      • 14. Lewis, M.F., West, C.L., Craig, D.: ‘Attenuation of SAWs in LiNbO3’, in Wong, K.K. (Ed.): ‘de Properties of lithium niobate’ (The Institution of Electrical Engineers, 2002), pp. 252253.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-cds.2016.0038
Loading

Related content

content/journals/10.1049/iet-cds.2016.0038
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address