Your browser does not support JavaScript!
http://iet.metastore.ingenta.com
1887

access icon free Design of a ±0.15 dB accurate baseband detector for FMCW radars employing inherent PVT cancellation

This study presents design methodologies for high accuracy baseband detectors for use in automatic gain control (AGC) loops. These loops are used in many applications to stabilise the signal level in a transceiver chain. In a wireless frequency modulated continuous wave (FMCW) radar receiver for example, it is desired to maintain a constant baseband signal level at the receiver output prior to the analogue-to-digital converter. Due to the AGC loop feedback action, the accuracy of this output level directly depends on the detector accuracy. In this study, a detector design employing inherent cancellation of process, voltage and temperature (PVT) variations without the need for any complex compensation schemes is proposed. Measurement results of a fabricated test chip are in good agreement with simulations achieving ±0.15 dB accuracy over temperature, supply and part-to-part variations. The fabricated detector prototype on an IBM 0.18 µm technology has an active area of 0.05 mm2 and draws 1 mA from a 3 V supply. An integrated AGC loop including the proposed detector achieves a 52 dB dynamic range consuming an overall 9 mW power. To the best of the authors’ knowledge, the proposed detector has the highest uncalibrated accuracy reported up to date.

References

    1. 1)
    2. 2)
      • 13. Yan, C., Luhong, M., Shilin, Z., et al: ‘An optical receiver with automatic gain control for radio-over-fiber system’. Proc. of Int. Conf. of Electron Devices and Solid-State Circuits, Tianjin, China, 2011, pp. 12.
    3. 3)
    4. 4)
      • 25. Gilbert, B.: ‘A low-noise wideband variable-gain amplifier using an interpolated ladder attenuator’. ISSCC Digest of Technical Papers, San Francisco, USA, 1991, pp. 280281.
    5. 5)
      • 17. Hastings, A.: ‘The art of analog layout’ (Prentice Hall, 2005, 2nd edn.).
    6. 6)
      • 11. Muijs, E., Silva, P., Staveren, A., et al: ‘A 39 dB DR CMOS log-amp RF power detector with ±1.1 dB temperature drift from −40 to 85°C’. Proc. of ESSCIRC, Bucharest, Romania, 2013, pp. 287290.
    7. 7)
      • 1. Whitlow, D.: ‘Design and operations of automatic gain control loops for receivers in modern communication systems’ (Analog Devices).
    8. 8)
    9. 9)
      • 3. Joram, N., Al-Qudsi, B., Wagner, J., et al: ‘Design of a multi-band FMCW radar module’. Proc. of WPNC, Dresden, Germany, 2013, pp. 16.
    10. 10)
      • 4. Poisel, R.A.: ‘Electronic warfare, receivers and receiving systems’ (Artech House, 2014).
    11. 11)
    12. 12)
      • 19. Shieh, M.L., Lai, W.J., Li, J.S., et al: ‘Linear radio frequency power detector’. Proc. of Asia Pacific Microwave Conf., Singapore, 2009, pp. 23162319.
    13. 13)
      • 28. Teo, T.H., Arasu, M.A., Yeoh, W.G., et al: ‘A 90 nm CMOS variable-gain amplifier and RSSI design for wide-band wire-less network application’. Proc. of ESSCIRC, Montreux, Switzerland, 2006, pp. 8689.
    14. 14)
    15. 15)
    16. 16)
      • 5. Datasheet: ‘Dual, low noise, wideband variable gain amplifiers AD600/AD602’ (Analog Devices).
    17. 17)
      • 7. Datasheet: ‘Ultralow noise VGAs with preamplifier and programmable RIN AD8331/AD8332/AD8334’ (Analog Devices).
    18. 18)
      • 22. Wu, K.I., Hung, S.-Y., Hung, S.-H., et al: ‘A fast-settling high linearity auto gain control for broadband OFDM-based PLC system’. Proc. of ISCAS, Lisbon, Portugal, 2015, pp. 28522855.
    19. 19)
      • 20. Wu, J.W., Hsu, K.C., Lai, W.J., et al: ‘A linear-in-dB radio-frequency power detector’. Microwave Symp. Digest, Baltimore, MD, 2011, pp. 14.
    20. 20)
      • 9. Al-Qudsi, B., El-Shennawy, M., Wu, Y., et al: ‘A hybrid TDoA/RSSI model for mitigating NLOS errors in FMCW based indoor positioning systems’. Proc. of PRIME, Glasgow, Scotland, 2015, pp. 9396.
    21. 21)
      • 26. El-Shennawy, M., Joram, N., Ellinger, F.: ‘Techniques for maximizing input handling and improving linearity of gain interpolating VGAs’. Proc. of PRIME, Glasgow, Scotland, 2015, pp. 14.
    22. 22)
      • 8. Datasheet: ‘500 MHz, linear-in-dB VGA with AGC detector AD8367’ (Analog Devices).
    23. 23)
      • 14. Alegre, J.P., Calvo, B., Celma, S.: ‘A fast compact CMOS feedforward automatic gain control circuit’. Proc. of ISCAS, Seattle, USA, 2008, pp. 15041507.
    24. 24)
    25. 25)
      • 6. Datasheet: ‘Dual, low noise, single-supply variable gain amplifier AD605’ (Analog Devices).
    26. 26)
    27. 27)
      • 24. Datasheet: ‘50 Hz to 3.8 GHz 65 dB TruPwr™ detector’ (Analog Devices).
    28. 28)
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-cds.2015.0352
Loading

Related content

content/journals/10.1049/iet-cds.2015.0352
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address