Your browser does not support JavaScript!
http://iet.metastore.ingenta.com
1887

access icon free Effect of thin gate dielectrics on DC, radio frequency and linearity characteristics of lattice-matched AlInN/AlN/GaN metal–oxide–semiconductor high electron mobility transistor

In this paper, the authors present a polarisation dependent analytical model for DC, radio frequency (RF) and linearity characteristics of a proposed lattice-matched AlInN/AlN/GaN metal–oxide–semiconductor high electron mobility transistor (MOSHEMT). The developed model includes charge controlled analysis derived from triangular potential well approximation along with the spontaneous and piezoelectric polarisation effects. The model accurately predicts the threshold voltage, two-dimensional electron gas sheet charge density, drain current, transconductance and cut-off frequencies for different samples of gate dielectric materials such as SiO2, HfO2 and Al2O3 over a full range of gate and drain bias. A detailed analysis of the linearity characteristics by investigating the key figure-of-merit metrics such as second-order voltage intercept point, third-order voltage intercept point, third-order input intercept point and third-order intermodulation distortion are performed for different gate dielectric thicknesses of 5, 7 and 10 nm. The accuracy of the model results is verified against Silvaco Technology Computer Aided Design numerical simulation results and found to be satisfactory. It is observed that by careful tuning the device parameters such as dielectric constant and dielectric thickness, lattice-matched AlInN/AlN/GaN MOSHEMT can considerably improve the device performance and suitable for high performance low distortion RF applications.

References

    1. 1)
    2. 2)
      • 32. Razavi, B.: ‘RF microelectronics’ (Prentice-Hall, Englewood Cliffs, NJ, 1998).
    3. 3)
      • 21. Wood, C., Jena, D.: ‘Polarization effects in semiconductors’ (Springer-Verlag, New York, NY, USA, 2008), pp. 4359.
    4. 4)
      • 17. User Guide Manual, ATLAS, Version 5.12.0.R. USA, Silvaco Inc, 2010.
    5. 5)
    6. 6)
      • 22. Jena, K., Swain, R., Lenka, T.R.: ‘Modeling and comparative analysis of DC characteristics of AlGaN/GaN HEMT and MOSHEMT devices’, Int. J. Numer. Model., 2015, doi: |pi10.1002/jnm.2048.
    7. 7)
    8. 8)
      • 26. Jin, X., Ou, J.J., Chen, C.H., et al: ‘An effective gate resistance model for CMOS RF and noise modeling’. Electron Devices Meeting, December 1998, pp. 961964.
    9. 9)
    10. 10)
    11. 11)
    12. 12)
    13. 13)
    14. 14)
    15. 15)
    16. 16)
    17. 17)
    18. 18)
    19. 19)
    20. 20)
      • 8. Wei, M., Cheng, Z.J., Shuai, X.J., et al: ‘Fabrication and characteristics of AlInN/AlN/GaN MOS-HEMTs with ultra-thin atomic layer deposited Al2O3 gate dielectric’, Chin. Phys. Lett., 2010, 27, (12), pp. 128501-1128501-4.
    21. 21)
    22. 22)
    23. 23)
    24. 24)
    25. 25)
    26. 26)
    27. 27)
      • 9. Cico, K., Husekova, K., Tapajna, M., et al: ‘Electrical properties of InAlN/GaN high electron mobility transistor with Al2O3, ZrO2 and GdScO3 gate dielectrics’, J. Vac. Sci. Technol. B, 2011, 29, (1), pp. 01A808-101A808-5.
    28. 28)
    29. 29)
      • 11. Lachab, M., Sultana, M., Fareed, Q., et al: ‘Transport properties of SiO2/AlInN/AlN/GaN metal–oxide–semiconductor high electron mobility transistors on SiC substrate’, J. Phys. D, Appl. Phys., 2014, 47, (14), pp. 135108-1135108-7.
    30. 30)
    31. 31)
    32. 32)
    33. 33)
    34. 34)
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-cds.2015.0332
Loading

Related content

content/journals/10.1049/iet-cds.2015.0332
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address