access icon free Practical approach to power integrity-driven design process for power-delivery networks

The authors present a practical design process that considers the power noise problem in CPU blocks for application processors used in smart TVs. The target impedance is determined by modelling the RLC circuit of a system-on-chip power net. The target impedance of a power delivery network is then determined by applying the extracted chip current profile for finalising the design budget. The authors modelled the on-chip power net by combining vector network analyser measurements with an on-chip model for power integrity analysis. The authors demonstrated the optimisation and design strategy by using a ball grid array ball interconnection and case studies on the placement of multilayer ceramic capacitors. The simulation results showed good agreement with the measurement results. The error in the minimum value (negative direction) by voltage droop was less than 8.6%, while the difference in voltage noise ripple was 2.69% for a criterion of 1.1 V assuming a worst-case condition of 1.2 V.

Inspec keywords: system-on-chip; RLC circuits; ceramic capacitors; network analysers; integrated circuit interconnections; digital television; integrated circuit design; circuit optimisation; microprocessor chips; ball grid arrays; integrated circuit modelling; integrated circuit noise

Other keywords: voltage 1.2 V; multilayer ceramic capacitors; ball grid array ball interconnection; vector network analyser measurements; voltage noise ripple; voltage droop; power-delivery networks; CPU blocks; chip current profile; RLC circuit; voltage 1.1 V; smart TV; application processors; power integrity analysis; power integrity-driven design process; system-on-chip power net; power noise problem; on-chip model

Subjects: Product packaging; Digital circuit design, modelling and testing; Network and spectrum analysers; Microprocessors and microcomputers; Television and video equipment, systems and applications; Capacitors; System-on-chip

References

    1. 1)
      • 21. Ko, B., Kim, J., Ryoo, J., et al: ‘Practical verification of power delivery networks for smart TV applications’. Proc. IEEE Int. Conf. Consumer Electronics (ICCE), Las Vegas, USA, January 2015, pp. 594595.
    2. 2)
    3. 3)
      • 20. Swaminathan, M., Kim, W., Novak, I.: ‘Measurement problems in high-speed networks’. Proc. Instrumentation and Measurement Technology Conf., Budapest, Hungary, May 2001, pp. 13391346.
    4. 4)
    5. 5)
    6. 6)
      • 15. ‘Cadence ‘PowerSI V16.0’ – EM simulation tool’. Available at http://www.cadence.com, accessed September 2015.
    7. 7)
      • 13. Kulali, E., Wasserman, E., Ji, Z.: ‘Chip power model – A new methodology for system power integrity analysis and design’. Proc. IEEE Electrical Performance Electronic Packaging (EPEPS), Atlanta, USA, October 2007, pp. 259262.
    8. 8)
    9. 9)
      • 25. Knighten, J.L., Archambeault, B., Fan, J., et al: ‘PDN design strategies: II. ceramic SMT decoupling capacitors – does location matter?’, IEEE EMC Soc. Newsl., 2006, pp. 5667.
    10. 10)
    11. 11)
      • 23. Larry, D.S., Shishuang, S., Mayra, S., et al: ‘On-die capacitance measurements in the frequency and time domains’. Proc. DesignCon, Santa Clara, USA, January 2011.
    12. 12)
      • 19. Novak, I.: ‘Measuring milliohms and picohenrys in power-distribution networks’. Proc. DesignCon, Santa Clara, USA, January 2000.
    13. 13)
    14. 14)
      • 17. Fizesan, R., Pitica, D.: ‘Simulation for power integrity to design a PCB for an optimum cost’. Proc. Int. Symp. Design and Technology in Electronic Packaging (SIITME), Pitesti, Romania, September 2010, pp. 141146.
    15. 15)
      • 9. Tanaka, M.S., Toyama, M., Nakashima, H., et al: ‘Chip oriented target impedance for digital power distribution network design’. Proc. IEEE Electrical Performance of Electronic Packaging and Systems, Tempe, Arizona, USA, October 2012, pp. 220223.
    16. 16)
    17. 17)
      • 14. Sasaki, H., Kanazawa, M., Sudo, T., et al: ‘New frequency dependent target impedance for DDR3 memory system’. Proc. IEEE Electrical Design of Advanced Packaging and System Symp., Hanzhou, China, December 2011, pp. 14.
    18. 18)
      • 24. Knighten, J.L., Archambeault, B., Fan, J., et al: ‘PDN design strategies: I. ceramic SMT decoupling capacitors – what values should I choose?’, IEEE EMC Soc. Newsl., 2005, pp. 3441.
    19. 19)
      • 3. Swaminathan, M., Eugin, A.E.: ‘Power integrity modeling and design for semiconductors and systems’ (Prentice Hall, 2007, 1st edn.).
    20. 20)
    21. 21)
      • 16. ‘Ansys ‘Designer V6.0’ – Schematic simulation tool’. Available at http://www.ansys.com, accessed 8 September 2015.
    22. 22)
    23. 23)
      • 18. Melinda, L.Y., Eileen, Y., Anil, G., et al: ‘SoC power integrity from early estimation to design sign off’. Proc. IEEE Electrical Performance of Electronic Packaging and Systems (EPEPS), San Jose, USA, October 2013, p. 3.
    24. 24)
    25. 25)
      • 7. Kim, G., Min, M., Yang, M., et al: ‘Package embedded decoupling capacitor impact on core power delivery network for ARM SoC application’. Proc. IEEE Electronic Components and Technology Conf., Orlando, USA, May 2014, pp. 354359.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-cds.2015.0285
Loading

Related content

content/journals/10.1049/iet-cds.2015.0285
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading