access icon free Electronic applications of graphene mechanical resonators

Graphene, an atomically thin two-dimensional material has become an ideal candidate for fabricating nano-electro-mechanical systems resonators because of its excellent mechanical properties and ultra-light weight. Its high tensile strength and Young's modulus coupled with the ability to withstand high strains while functioning make it suitable for use in mechanical resonators. In this study, the authors review the electronic applications of graphene mechanical resonators for future radio frequency communications, ultra-sensitive mass and temperature detection using the consequent changes in resonance frequency of the resonators. Moreover, they experimentally establish the non-linear characteristics of graphene mechanical resonators at high driving amplitudes and envision its applications in future electronics and sensing.

Inspec keywords: tensile strength; micromechanical resonators; nanoelectromechanical devices; Young's modulus; graphene

Other keywords: Young's modulus; electronic applications; temperature detection; radiofrequency communications; nonlinear characteristics; nanoelectromechanical systems resonators; C; mechanical properties; tensile strength; ultra-sensitive mass; ultra-light weight; graphene mechanical resonators; atomically thin two-dimensional material

Subjects: Micromechanical and nanomechanical devices and systems; Design and modelling of MEMS and NEMS devices; Fabrication of MEMS and NEMS devices

References

    1. 1)
      • 32. Leaks, M., Lee, S., Cha, W., et al: ‘Noise modeling of graphene resonant channel transistors’, accepted by IEEE 0018-9383, 2015.
    2. 2)
      • 36. Feng, X.L.: ‘Ultrahigh frequency nanoelectromechanical systems with low noise technologies for single molecule mass sensing’. PhD thesis, California Institute of Technology, 2006.
    3. 3)
    4. 4)
    5. 5)
    6. 6)
    7. 7)
    8. 8)
    9. 9)
    10. 10)
    11. 11)
    12. 12)
      • 29. Sebastian Anthony doi: 10.1038/ncomms2830 – ‘broadband high photo-response from pure monolayer graphene photo-detector’.
    13. 13)
    14. 14)
    15. 15)
    16. 16)
    17. 17)
    18. 18)
      • 40. Lu, Y., Peng, S., Luo, D., et al: ‘Low-concentration mechanical biosensor based on a photonic crystal nanowire array’.
    19. 19)
    20. 20)
    21. 21)
    22. 22)
      • 34. Roukes, M.L., Ekinci, K.L.: ‘Apparatus and method for ultrasensitive nanoelectromechanical mass detection’. US patent 6, 722, 200, 2004.
    23. 23)
    24. 24)
      • 3. Wilson, M.: ‘Electrons in atomically thin carbon sheets behave like massless particles’, Phys. Today, 2006, 59, p. 21.
    25. 25)
      • 38. Matheny, M.H., Villanueva, L.G., Karabalin, R.B., et al: ‘Nonlinear mode-coupling in nanomechanical systems’, Nano Lett., 2013, 13, pp. 16221626.
    26. 26)
    27. 27)
    28. 28)
    29. 29)
      • 39. Lu, Y., Lal, A.: ‘Nanowire assisted frequency stabilization for nanowire array assembly oscillator’. MEMS, Taipei, Taiwan, January 20–24, 2013.
    30. 30)
    31. 31)
    32. 32)
      • 28. Xu, Y., Li, O., Xu, R.: ‘Graphene resonant channel transistor’, 978–1–4673-2141-9/13, IEEE, 2013.
    33. 33)
    34. 34)
    35. 35)
    36. 36)
      • 9. Poot, M., van der Zan, H.S.J.: ‘Nanomechanical properties of few-layer graphene membranes’. PhD Thesis, Delft University, February 14, 2013.
    37. 37)
    38. 38)
    39. 39)
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-cds.2015.0134
Loading

Related content

content/journals/10.1049/iet-cds.2015.0134
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading