access icon free Simple and robust self-healing technique for millimetre-wave amplifiers

A simple and robust self-healing technique for millimetre-wave (mm-wave) amplifiers is proposed. The self-healing technique can correct the operation frequency shifting of the amplifier (including its input and output impedance matching shifting) due to process, voltage, and temperature variations and modelling inaccuracy. A mm-wave amplifier with digitally controlled artificial dielectric transmission lines as fine frequency tuning components and an on-chip power detector as the frequency shifting detector has been implemented in 65 nm complementary metal–oxide–semiconductor to verify the effectiveness of the technique. The operating frequency of five amplifier chips is calibrated by running the self-healing algorithm on a field-programmable gate array development board. On average, the gain of the amplifier is improved by 2.60 dB from 13.66 to 16.26 dB and the input matching is improved by 12.78 dB from −4.89 to −17.67 dB at 56 GHz after the proposed self-healing procedure.

Inspec keywords: dielectric materials; impedance matching; circuit tuning; digital control; transmission lines; field programmable gate arrays; CMOS integrated circuits; millimetre wave amplifiers

Other keywords: amplifier chip; gain 13.66 dB to 16.26 dB; self-healing technique; field-programmable gate array; impedance matching shifting; mm-wave amplifier; digitally controlled artificial dielectric transmission line; frequency tuning component; frequency shifting detector; temperature variation; gain 2.6 dB; complementary metal-oxide-semiconductor; millimetre-wave amplifier; size 65 nm; frequency 56 GHz; on-chip power detector; operation frequency shifting

Subjects: Logic circuits; Discrete control systems; Wires and cables; CMOS integrated circuits; Microwave circuits and devices; Logic and switching circuits; Amplifiers; Dielectric materials and properties

References

    1. 1)
      • 17. Buadana, N., Socher, E.: ‘A triple band travelling wave VCO using digitally controlled artificial dielectric transmission lines’. IEEE Radio Frequency Integrated Circuits Symp. Digest, June 2011, pp. 14.
    2. 2)
    3. 3)
      • 12. LaRocca, T., Liu, J., Wang, F., et al: ‘CMOS digital controlled oscillator with embedded DiCAD resonator for 58–64 GHz linear frequency tuning and low phase noise’. IEEE Int. Micro. Symp., June 2009, pp. 685688.
    4. 4)
      • 9. Jayaraman, K., Khan, Q., Chi, B., et al: ‘A self-healing 2.4 GHz LNA with on-chip S11/S21 measurement/calibration for in-situ PVT compensation’. IEEE Radio Frequency Integrated Circuits Symp. Digest 2010, June 2010, pp. 311314.
    5. 5)
      • 3. Chao, Y., Luong, H.C.: ‘Transformer-based dual-band VCO and injection-locked frequency divider for wide-band mm-wave LO generation’. Proc. IEEE Custom Integrated Circuits Conf. (CICC), September 2013, pp. 14.
    6. 6)
      • 1. Laskin, E., Tomkins, A., Balteanu, A., et al: ‘A 60-GHz RF IQ DAC transceiver with on-die at-speed loopback’. IEEE Radio Frequency Integrated Circuits Symp. Digest 2011, June 2011, pp. 5760.
    7. 7)
      • 18. Jia, H., Chi, B., Kuang, L., et al: ‘A self-healing mm-wave amplifier using digital controlled artificial dielectric transmission lines’. Asian Solid-State Circuits Conf. Technical Digest, November 2013, pp. 425428.
    8. 8)
      • 13. LaRocca, T., Liu, J., Wang, F., et al: ‘Embedded DiCAD linear phase shifter for 57–65 GHz reconfigurable direct frequency modulation in 90 nm CMOS’. IEEE Radio Frequency Integrated Circuits Symp. Digest 2009, June 2009, pp. 219222.
    9. 9)
    10. 10)
      • 11. LaRocca, T., Tam, S.W., Huang, D., et al: ‘Millimeter-wave CMOS digital controlled artificial dielectric differential mode transmission lines for reconfigurable ICs’. IEEE Int. Micro. Symp., June 2008, pp. 181184.
    11. 11)
    12. 12)
      • 8. Giannini, V., Shi, Q., Medra, A., et al: ‘A 79 GHz phase-modulated 4 GHz BW CW radar TX in 28 nm CMOS’. IEEE Int. Solid-State Circuits Conf. Digest, February 2014, pp. 250251.
    13. 13)
      • 6. Sah, S.P., Heo, D.: ‘A 8th sub-harmonic injection locked Vband VCO for low power LO routing in mm-wave beamformers’. IEEE Radio Frequency Integrated Circuits Symp. Digest, June 2014, pp. 14.
    14. 14)
      • 5. Sadhu, B., Ferrisss, M., Garcia, A.V.: ‘A 46.4–58.1 GHz frequency synthesizer featuring a 2nd harmonic extraction technique that preserves VCO performance’. IEEE Radio Frequency Integrated Circuits Symp. Digest, June 2014, pp. 14.
    15. 15)
    16. 16)
      • 4. Mitomo, T., Tsutsumi, Y., Hoshino, H., et al: ‘A 2 Gb/s throughput CMOS transceiver chipset with in-package antenna for 60 GHz short-range wireless communication’. Proc. IEEE Int. Solid-State Circuits Digest, February 2012, pp. 266267.
    17. 17)
      • 19. Kawai, S., Mitomo, T., Saigusa, S.: ‘A 60 GHz CMOS rectifier with −27.5 dBm sensitivity for mm-wave power detection’. Asian Solid-State Circuits Conf. Technical Digest, November 2012, pp. 281284.
    18. 18)
      • 7. Chuang, L., Kammerer, M.K., Mahmoudi, R., et al: ‘A millimeter-wave tunable transformer-based dual-antenna duplexer with 50 dB isolation’. Proc. IEEE Custom Integrated Circuits Conf. (CICC), September 2014.
    19. 19)
      • 14. Wu, W., Long, J.R., Staszewski, R.B., et al: ‘High-resolution 60-GHz DCOs with reconfigurable distributed metal capacitors in passive resonators’. IEEE Radio Frequency Integrated Circuits Symp. Digest, June 2012, pp. 9194.
    20. 20)
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-cds.2015.0029
Loading

Related content

content/journals/10.1049/iet-cds.2015.0029
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading