Your browser does not support JavaScript!
http://iet.metastore.ingenta.com
1887

access icon free Multi-standard high-throughput and low-power quasi-cyclic low density parity check decoder for worldwide interoperability for microwave access and wireless fidelity standards

This study presents a reconfigurable quasi-cyclic low density parity check (QC-LDPC) decoder for IEEE 802.16e worldwide interoperability for microwave access and IEEE 802.11n wireless fidelity communication standards. It supports multiple code-rates of 1/2, 2/3, 3/4, 5/6 and its architecture has been designed based on column layered decoding technique to enhance the convergence speed. The authors have suggested a register file based approach to handle the shift property of the modified parity check matrix and a modified version of the matrix permutation method has been introduced to reduce the number of check nodes which handle multiple messages. In addition, parallel processing has been incorporated in the decoder architecture to attain higher achievable throughput. This QC-LDPC decoder is implemented in 90 nm CMOS process and is post-layout simulated. It can achieve a throughput of 796 Mbps for a code-rate of 5/6. With 0.9 V supply, it consumes 146 mW of total power at 149 MHz clock frequency.

References

    1. 1)
    2. 2)
    3. 3)
      • 3. IEEE Std 802.11n-2009 (Amendment to IEEE Std 802.11-2007 as amended by IEEE Std 802.11k-2008, IEEE Std 802.11r-2008, IEEE Std 802.11y-2008, and IEEE Std 802.11w-2009), 2009.
    4. 4)
    5. 5)
    6. 6)
    7. 7)
      • 14. Lin, J., Sha, J., Wang, Z., et al: ‘An improved min-sum based column-layered decoding algorithm for LDPC codes’. IEEE Workshop on Signal Processing Systems (SiPS 2009), 2009, pp. 238242.
    8. 8)
      • 6. Sha, J., Wang, Z., Gao, M.: ‘VLSI’. InTech, under CC BY-NC-SA, 2010.
    9. 9)
    10. 10)
      • 10. Sharon, E., Litsyn, S., Goldberger, J.: ‘An efficient message-passing schedule for LDPC decoding’. Proc. of 23rd IEEE Convention of Electrical and Electronics Engineers in Israel, 2004, pp. 223226.
    11. 11)
    12. 12)
      • 21. Brack, T., Alles, M., Lehnigk-Emden, T., et al: ‘Low complexity LDPC code decoders for next generation standards’. Design, Automation Test in Europe Conf. Exhibition (DATE ‘07), 2007, pp. 16.
    13. 13)
      • 15. Cui, Z., Wang, Z., Zhang, X., et al: ‘Efficient decoder design for high-throughput LDPC decoding’. IEEE Asia Pacific Conf. on Circuits and Systems (APCCAS 2008), 2008, pp. 16401643.
    14. 14)
    15. 15)
      • 11. Radosavljevic, P., Baynast, A.D., Cavallaro, J.R.: ‘Optimized message passing schedules for LDPC decoding’. Conf. Record of the 39th Asilomar Conf. on Signals, Systems and Computers, 2005, pp. 591595.
    16. 16)
    17. 17)
    18. 18)
    19. 19)
      • 20. Kuo, T., Willson, A.N.: ‘A flexible decoder IC for WiMAX QC-LDPC codes’. IEEE Custom Integrated Circuits Conf. (CICC 2008), 2008, pp. 527530.
    20. 20)
      • 2. IEEE Std 802.16e-2005 and IEEE Std 802.16-2004/Cor 1-2005 (Amendment and Corrigendum to IEEE Std 802.16-2004), 2006.
    21. 21)
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-cds.2014.0347
Loading

Related content

content/journals/10.1049/iet-cds.2014.0347
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address