access icon free Holistic design strategy for high-selectivity low-loss integrated millimetre-wave image-reject filters

To alleviate practical limitations in the design of millimetre-wave on-chip image-reject filters, systematic design methodologies are presented. Three low-order filters with high-selectivity and low-loss characteristics are designed and compared. Transmission zeroes are created by means of a quarter-wave transmission line (filter 1) and a series LC resonator (filters 2 and 3). Implemented on silicon germanium, the filters occupy 0.125, 0.064 and 0.079 mm2 chip area including pads. The measured transmission losses across 81–86 GHz E-band frequency range are 3.6–5.2 dB for filter 1, 3.1–4.7 dB for filter 2 and 3.6–5 dB for filter 3 where rejection levels at the image band are >30 dB.

Inspec keywords: Ge-Si alloys; millimetre wave filters; electronic engineering computing; resonator filters; image filtering; millimetre wave imaging; LC circuits

Other keywords: millimetre-wave on-chip image-reject filter; gain 3.1 dB to 4.7 dB; systematic design methodology; SiGe; low-order filter; frequency 81 GHz to 86 GHz; quarter-wave transmission line; series LC resonator filter; gain 3.6 dB to 5.2 dB; transmission zero; high-selectivity low-loss integrated millimetre-wave image-reject filter

Subjects: Optical, image and video signal processing; Microwave measurement techniques; Electronic engineering computing; Waveguide and microwave transmission line components; Passive filters and other passive networks; Computer vision and image processing techniques

References

    1. 1)
    2. 2)
      • 15. Lu, M.-C., Chang, J.-F., Lu, L.-C., Lin, Y.-S.: ‘Miniature 60 GHz-band bandpass filter with 2.55 dB insertion-loss using standard 0.13 μm CMOS technology’. Int. Symp. on VLSI Design, Automation and Test, Hsinchu, Taiwan, April 2009, pp. 9295.
    3. 3)
    4. 4)
      • 1. Katz, O., Ben-Yishay, R., Carmon, R., et al: ‘High-power high-linearity SiGe based E-band transceiver chipset for broadband communication’. IEEE RFIC, Montreal, Canada, June 2012, pp. 115118.
    5. 5)
    6. 6)
    7. 7)
      • 9. Pokharel, R.K., Liu, X., Dong, R., Dayang, A.B.A., Kanaya, H., Yoshida, K.: ‘A high selectivity, low insertion loss 60 GHz band on-chip 4-pole band pass filter for millimeter wave CMOS SoC’. IEEE EuMIC Conf., Manchester, UK, October 2011, pp. 660663.
    8. 8)
      • 17. Pokharel, R.K., Liu, X., Dong, R., Dayang, A.B.A., Kanaya, H., Yoshida, K.: ‘60 GHz-band low loss on-chip bandpass filter with patterned ground shields for millimeter wave CMOS SoC’. IEEE MTT-S Int. Microwave Symp., Baltimore, USA, June 2011, pp. 14.
    9. 9)
    10. 10)
    11. 11)
      • 10. Yishay, R.B., Carmon, R., Katz, O., et al: ‘A millimeter-wave SiGe power amplifier with highly selective image reject filter’. IEEE Int. COMCAS, Tel Aviv, Israel, November 2011, pp. 15.
    12. 12)
    13. 13)
      • 8. Yang, B., Skafidas, E., Evans, R.J.: ‘A novel slow-wave structure for millimeter-wave filter application on bulk CMOS’. IEEE Radio and Wireless Symp., Phoenix, AZ, January 2011, pp. 138141.
    14. 14)
      • 19. Mouthaan, K., Lu, X., Hu, F., Hu, Z., Taslimi, A.: ‘Status and design challenges of 60 GHz passive bandpass filters in standard CMOS’. IEEE Int. Wireless Symp., Beijing, China, April 2013, pp. 14.
    15. 15)
    16. 16)
    17. 17)
      • 16. Lin, W.-C., Shen, T.-M., Chen, C.-F., Huang, T.-Y., Wu, R.-B.: ‘A miniaturized V-band bandpass filter using integrated passive devices technology’. Asia-Pacific Microwave Conf., Yokohama, Japan, December 2010, pp. 11701173.
    18. 18)
    19. 19)
    20. 20)
      • 22. Böck, J., Schafer, H., Aufinger, K., et al: ‘SiGe bipolar technology for automotive radar applications’. IEEE BCTM, Montreal, Canada, September 2004, pp. 8487.
    21. 21)
    22. 22)
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-cds.2014.0335
Loading

Related content

content/journals/10.1049/iet-cds.2014.0335
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading