access icon free Improving logic function synthesis, through wire crossing reduction in quantum-dot cellular automata layout

Quantum-dot cellular automata, as the successor of metal–oxide semiconductor field-effect transistors, are one of the promising nanotechnology devices, which have attracted myriad researchers in the recent decade. In this technology, coplanar wire crossing is one of the unique specifications that can reduce its reliability. In the present study, a heuristic method is introduced using the Karnaugh-Map (K-Map) to minimise the number of wire crossing as the first step. Afterwards, it attempts to replace each wire crossing with three non-wire crossing XOR gates that reduce all wire crossings to zero as the second step. Experimental results reveal that, reducing wire crossings to zero, the authors method for 3-variable functions lowers the number of gates about 54, 42, 58 and 59%, respectively, in comparison with K-Map, Genetic, Gate-Optimise and Universal Quantum-dot Cellular Automata Logic Gate (UQCALG) methods. For 4-variable functions, their method decreases the number of gates almost 64 and 58%, respectively.

Inspec keywords: heuristic programming; cellular automata; logic gates; quantum dots

Other keywords: Karnaugh-Map; coplanar wire crossing; wire crossing reduction; heuristic method; nonwire crossing XOR gates; quantum-dot cellular automata layout; logic function synthesis

Subjects: Logic elements; Logic circuits; Control logic

References

    1. 1)
      • 28. Dysart, T.J., Kogge, P.M.: ‘Probabilistic analysis of a molecular quantum-dot cellular automata adder’. 22nd IEEE Int. Symp. on Defect and Fault-Tolerance in VLSI Systems, 2007. DFT'07, 2007, pp. 478486.
    2. 2)
      • 25. Tung, Ch.Ch., Rungta, R.B., Peskin, E.R.: ‘Simulation of a QCA-based CLB and a multi-CLB application’. Int. Conf. on Field-Programmable Technology, 2009. FPT 2009, 2009, pp. 6269.
    3. 3)
      • 7. Wang, P., Niamat, M., Vemuru, S.: ‘Minimal majority gate mapping of 4-variable functions for quantum cellular automata’. 2011 11th IEEE Conf. on Nanotechnology (IEEE-NANO), 2011, pp. 13071312.
    4. 4)
      • 6. Roohi, A., Kamrani, M., Sayedsalehi, S., Navi, K.: ‘A combinational logic optimization for majority gate-based nanoelectronic circuits based’. Int. Semiconductor Device Research Symp. (ISDRS), 2011, pp. 12.
    5. 5)
      • 19. Chaudhary, A., Chen, D.Z., Hu, X.S., Whitton, K., Niemier, M., Ravichandran, R.: ‘Eliminating wire crossings for molecular quantum-dot cellular automata implementation’. Proc. of the IEEE/ACM Int. Conf. on Computer-aided Design, 2005, pp. 565571.
    6. 6)
    7. 7)
    8. 8)
      • 23. Lakshmi, S.K., Athisha, G.: ‘Efficient design of logical structures and functions using nanotechnology based quantum dot cellular automata design’, Int. J. Comput. Appl. IJCA, 2010, 3, pp. 3542.
    9. 9)
      • 21. Sen, B., Sengupta, A., Dalui, M., Sikdar, B.K.: ‘Design of testable universal logic gate targeting minimum wire-crossings in QCA logic circuit’. 2010 13th Euromicro Conf. on Digital System Design: Architectures, Methods and Tools (DSD), 2010, pp. 613620.
    10. 10)
    11. 11)
      • 10. Huo, Z., Zhang, Q., Haruehanroengra, S., Wang, W.: ‘Logic optimization for majority gate-based nanoelectronic circuits’. Proc. 2006 IEEE Int. Symp. on Circuits and Systems, 2006. ISCAS 2006, 2006, pp. 13071310.
    12. 12)
      • 17. Bubna, M., Roy, S., Shenoy, N., Mazumdar, S.: ‘A layout-aware physical design method for constructing feasible QCA circuits’. Proc. of the 18th ACM Great Lakes Symp. on VLSI, 2008, pp. 243248.
    13. 13)
      • 13. Crocker, M., Hu, X.S., Niemier, M.: ‘Fault models and yield analysis for QCA-based PLAs’. Int. Conf. on Field Programmable Logic and Applications, 2007. FPL 2007, 2007, pp. 435440.
    14. 14)
      • 14. Dalui, M., Sen, B., Sikdar, B.: ‘Fault tolerant QCA logic design with coupled majority-minority gate’, Int. J. Comput. Appl., 2010, 1, (29), pp. 9096.
    15. 15)
      • 26. Walus, K., Schulhof, G., Jullien, G.A., Zhang, R., Wang, W.: ‘Circuit design based on majority gates for applications with quantum-dot cellular automata’. Conf. Record of the 38th Asilomar Conf. on Signals, Systems and Computers, 2004, 2004, pp. 13541357.
    16. 16)
      • 3. Bobba, S., Hajj, I.N.: ‘Maximum leakage power estimation for CMOS circuits’. Proc. IEEE Alessandro Volta Memorial Workshop on Low-Power Design, 1999, 1999, pp. 116124.
    17. 17)
    18. 18)
      • 9. Bonyadi, M.R., Azghadi, S.M.R., Rad, N.M., Navi, K., Afjei, E.: ‘Logic optimization for majority gate-based nanoelectronic circuits based on genetic algorithm’. Int. Conf. on Electrical Engineering, 2007. ICEE'07, 2007, pp. 15.
    19. 19)
    20. 20)
      • 11. Houshmand, M., Khayat, S.H., Rezaei, R.: ‘Genetic algorithm based logic optimization for multi-output majority gate-based nano-electronic circuits’. IEEE Int. Conf. on Intelligent Computing and Intelligent Systems, 2009. ICIS 2009, 2009, pp. 584588.
    21. 21)
    22. 22)
      • 12. Tahoori, M.B., Momenzadeh, M., Huang, J., Lombardi, F.: ‘Defects and faults in quantum cellular automata at nano scale’. Proc. 22nd IEEE VLSI Test Symp., 2004, 2004, pp. 291296.
    23. 23)
      • 18. Smith, B.S., Lim, S.K.: ‘QCA channel routing with wire crossing minimization’. Great Lakes Symp. on VLSI: Proc. of the 15th ACM Great Lakes Symp. on VLSI, 2005, pp. 217220.
    24. 24)
    25. 25)
      • 20. Rajeswari, D., Paul, K., Balakrishnan, M.: ‘Clocking-based coplanar wire crossing scheme for QCA’. 23rd Int. Conf. on VLSI Design, 2010. VLSID'10, 2010, pp. 339344.
    26. 26)
    27. 27)
    28. 28)
    29. 29)
      • 5. Nejad, S.M., Kakhki, F.A., Rahimi, E.: ‘A simple mathematical model for clocked QCA cells’. 2010 Seventh Int. Symp. on Communication Systems Networks and Digital Signal Processing (CSNDSP), 2010, pp. 351354.
    30. 30)
      • 29. Liu, W., Lu, L., O'Neill, M., Swartzlander, E.E.: ‘Design rules for quantum-dot cellular automata’. 2011 IEEE Int. Symp. on Circuits and Systems (ISCAS), 2011, pp. 23612364.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-cds.2014.0327
Loading

Related content

content/journals/10.1049/iet-cds.2014.0327
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading