access icon free Decoder architecture for generalised concatenated codes

This paper proposes a pipelined decoder architecture for generalised concatenated (GC) codes. These codes are constructed from inner binary Bose–Chaudhuri–Hocquenghem (BCH) and outer Reed–Solomon codes. The decoding of the component codes is based on hard decision syndrome decoding algorithms. The concatenated code consists of several small BCH codes. This enables a hardware architecture where the decoding of the component codes is pipelined. A hardware implementation of a GC decoder is presented and the cell area, cycle counts as well as the timing constraints are investigated. The results are compared to a decoder for long BCH codes with similar error correction performance. In comparison, the pipelined GC decoder achieves a higher throughput and has lower area consumption.

Inspec keywords: BCH codes; error correction codes; Reed-Solomon codes; binary codes; concatenated codes; decoding

Other keywords: error correction performance; timing constraints; small BCH codes; hardware architecture; inner binary Bose-Chaudhuri-Hocquenghem codes; cycle counts; outer Reed-Solomon codes; generalised concatenated codes; hard decision syndrome decoding algorithms; GC codes; component codes; pipelined decoder architecture; cell area

Subjects: Codes; Codecs, coders and decoders

References

    1. 1)
      • 2. Bossert, M.: ‘Channel coding for telecommunications’ (Wiley, 1999).
    2. 2)
      • 9. Yaakobi, E., Grupp, L., Siegel, P.H., Swanson, S., Wolf, J.K.: ‘Characterization and error-correcting codes for tlc flash memories’. Int. Conf. on Computing, Networking and Communications (ICNC), 2012, January 2012, pp. 486491.
    3. 3)
      • 10. Dumer, I.: ‘Concatenated codes and their multilevel generalizations’, ‘Handbook of coding theory’ (Elsevier, Amsterdam, 1998), vol. II.
    4. 4)
      • 18. Jiang, Y.: ‘A practical guide to error-control coding using Matlab’ (Artech House, 2010).
    5. 5)
    6. 6)
      • 7. Micheloni, R., Marelli, A., Ravasio, R.: ‘Error correction codes for non-volatile memories’ (Springer, 2008).
    7. 7)
      • 19. Massey, J.: ‘Shift-register synthesis and BCH decoding’, IEEE Trans. Inf. Theory, 1969.
    8. 8)
    9. 9)
      • 4. Neubauer, A., Freudenberger, J., Kühn, V.: ‘Coding theory: algorithms, architectures and applications’ (John Wiley & Sons, 2007).
    10. 10)
    11. 11)
      • 23. Drescher, W.: ‘Schaltungsanordnung zur Galoisfeld-Arithmetik’ (Dissertation TU-Dresden, 2005).
    12. 12)
      • 1. Blahut, R.E.: ‘Theory and practice of error control codes’ (Addison-Wesley, 1983).
    13. 13)
      • 16. Liu, W., Rho, J., Sung, W.: ‘Low-power high-throughput BCH error correction VLSI design for multi-level cell NAND flash memories’. IEEE Workshop on Signal Processing Systems Design and Implementation (SIPS), October 2006, pp. 303308.
    14. 14)
      • 13. Freudenberger, J., Kaiser, U., Spinner, J.: ‘Concatenated code constructions for error correction in non-volatile memories’. Int. Symp. on Signals, Systems, and Electronics (ISSSE), Potsdam, October 2012, pp. 16.
    15. 15)
    16. 16)
    17. 17)
      • 8. Yaakobi, E., Ma, J., Grupp, L., Siegel, P.H., Swanson, S., Wolf, J.K.: ‘Error characterization and coding schemes for flash memories’. IEEE GLOBECOM Workshops, December 2010, pp. 18561860.
    18. 18)
      • 21. Chien, R.T.: ‘Cyclic decoding procedure for the Bose-Chaudhuri-Hocquenghem codes’. IEEE Transactions Informatiom Theory, 1964.
    19. 19)
      • 17. Wang, C., Gao, Y., Han, L., Wang, J.: ‘The design of parallelized BCH codec’. Third Int. Congress on Image and Signal Processing (CISP), 2010.
    20. 20)
      • 15. Freudenberger, J., Spinner, J., Shavgulidze, S.: ‘Generalized concatenated codes for correcting two-dimensional clusters of errors and independent errors’. Int. Conf. on Communication and Signal Processing (CSP), Castelldefels-Barcelona, February 2014, pp. 15.
    21. 21)
    22. 22)
      • 25. Freudenberger, J., Spinner, J.: ‘Mixed serial/parallel hardware implementation of the Berlekamp-Massey algorithm for BCH decoding in Flash controller applications’. Int. Symp. on Signals, Systems, and Electronics (ISSSE), Potsdam, October 2012, pp. 15.
    23. 23)
    24. 24)
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-cds.2014.0278
Loading

Related content

content/journals/10.1049/iet-cds.2014.0278
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading