access icon free Uncalibrated operational amplifier-based sensor interface for capacitive/resistive sensor applications

In this paper, a new configuration of operational amplifier -based square-wave oscillator is proposed. The circuit performs an impedance-to-period (Z–T) conversion that, instead of a voltage integration typically performed by other solutions presented in the literature, is based on a voltage differentiation. This solution is suitable as first analogue uncalibrated front-end for capacitive and resistive (e.g. relative humidity and gas) sensors, working also, in the case of capacitive devices, for wide variation ranges (up to six capacitive variation decades). Moreover, through the setting of passive components, its sensitivity can be easily regulated. Experimental measurements, conducted on a prototype printed circuit board, with sample passive components and using the commercial capacitive humidity sensor Honeywell HCH-1000, have shown good linearity and accuracy in the estimation of capacitances, having a baseline or reaching a value ranging in a wide interval [picofarads–microfarads], as well as, with a lower accuracy, in the evaluation of more reduced variations of resistances, ranging from kiloohms to megaohms, also when compared with other solutions presented in the literature.

Inspec keywords: humidity sensors; operational amplifiers; oscillators; capacitive sensors

Other keywords: resistive sensor; printed circuit board; operational amplifier-based square-wave oscillator; capacitive humidity sensor Honeywell HCH-1000; impedance-to-period conversion; operational amplifier-based sensor interface; voltage differentiation

Subjects: Sensing devices and transducers; Humidity measurement; Amplifiers; Oscillators

References

    1. 1)
    2. 2)
      • 44. Senani, R.: ‘A new technique for inductance-to-time-period conversion using integrated circuit operational amplifiers’, IEEE Trans. Ind. Electron. Control Instrum., 1980, IECI-27, pp. 3637.
    3. 3)
    4. 4)
    5. 5)
      • 1. De Marcellis, A., Ferri, G.: ‘Analog circuits and systems for voltage-mode and current-mode sensor interfacing applications’ (Springer, 2011, Dordrecht, 1st edn.).
    6. 6)
    7. 7)
      • 43. De Graaf, G., Wolffenbuttel, R.F.: ‘Circuit for readout and linearization of sensor bridges’. Proc. 30th European Solid-State Circuits Conf., Leuven, Belgium, September 2004, pp. 451454.
    8. 8)
    9. 9)
      • 2. De Marcellis, A., Ferri, G., Mantenuto, P.: ‘Resistive sensor interfacing’, in Reig, C., Cardoso, S., Mukhopadhyay, S.C. (Eds.): ‘Giant magnetoresistance (GMR) sensors’ (Springer, 2013, Heidelberg, 1st edn.), pp. 71102.
    10. 10)
    11. 11)
    12. 12)
    13. 13)
    14. 14)
    15. 15)
      • 55. Nojdelov, R., Nihtianov, S.: ‘Capacitive sensor interface with improved dynamic range and stability’. Proc. IEEE Int. Instrumentation and Measurement Technology Conf. (I2MTC), Montevideo, Uruguay, May 2014, pp. 13731376.
    16. 16)
    17. 17)
      • 50. Julsereewong, P., Julsereewong, A., Rerkratn, A., Pootharaporn, N.: ‘Simple resistance-to-time converter with lead-wire-resistance compensation’. Proc. SICE Annual Conf., Waseda University, Tokyo, Japan, September 2011, pp. 27602763.
    18. 18)
    19. 19)
      • 51. Kabara, P., Thakur, S., Saileshwar, G., Baghini, M.-S., Sharma, D.-K.: ‘CMOS low-noise signal conditioning with a novel differential resistance to frequency converter for resistive sensor applications’. Proc. IEEE Int. SoC Design Conf. (ISOCC), Jeju, South Korea, November 2011, pp. 298301.
    20. 20)
    21. 21)
    22. 22)
      • 21. Universal Transducer Interface UTI Datasheet, Smartec, 2008. Available at on-line resource http://www.smartec.nl.
    23. 23)
    24. 24)
    25. 25)
    26. 26)
    27. 27)
      • 9. Depari, A., De Marcellis, A., Ferri, G., Flammini, A.: ‘A complementary metal oxide semiconductor-integrable conditioning circuit for resistive chemical sensor management’, IOP Meas. Sci. Technol., 2011, 22, pp. 27.
    28. 28)
    29. 29)
    30. 30)
      • 54. Islam, T., Khan, A.-U., Akhtar, J.: ‘Accuracy analysis of oscillator-based active bridge circuit for linearly converting resistance to frequency’. Proc. IEEE Int. Conf. on Multimedia, Signal Processing and Communication Technologies (IMPACT), Aligarh – Uttar Pradesh, India, November 2013, pp. 305309.
    31. 31)
    32. 32)
      • 17. De Marcellis, A., Ferri, G., Mantenuto, P.: ‘A novel uncalibrated read-out circuit for floating capacitive and grounded/floating resistive sensor measurement’. Proc. Eurosensors XXVI, Cracow, Poland, September 2012, pp. 253256.
    33. 33)
      • 53. Wang, Y., Chodavarapu, V.-P.: ‘Design of CMOS capacitance to frequency converter for high-temperature MEMS sensors’. Proc. IEEE Sensors, Baltimore, USA, November 2013, pp. 14.
    34. 34)
    35. 35)
    36. 36)
    37. 37)
    38. 38)
    39. 39)
    40. 40)
    41. 41)
    42. 42)
    43. 43)
    44. 44)
      • 19. De Marcellis, A., Ferri, G., Mantenuto, P.: ‘A novel OA-based oscillating circuit for uncalibrated capacitive and resistive sensor interfacing applications’. Proc. IMCS, Nuremberg, Germany, May 2012, pp. 17071709.
    45. 45)
    46. 46)
    47. 47)
    48. 48)
      • 34. Jayaraman, B., Bath, N.: ‘High precision 16 bit readout gas sensor interface in 0.13 μm CMOS’. Proc. IEEE ISCAS, New Orleans, USA, May 2007, pp. 30713074.
    49. 49)
    50. 50)
    51. 51)
    52. 52)
    53. 53)
    54. 54)
    55. 55)
    56. 56)
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-cds.2014.0248
Loading

Related content

content/journals/10.1049/iet-cds.2014.0248
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading