Your browser does not support JavaScript!
http://iet.metastore.ingenta.com
1887

access icon free Design of a 56 Gbit/s 4-level pulse-amplitude-modulation inductor-less vertical-cavity surface-emitting laser driver integrated circuit in 130 nm BiCMOS technology

This paper presents the design and analysis of a 4-level pulse-amplitude-modulation (4-PAM) 56 Gbit/s vertical-cavity surface-emitting laser (VCSEL) driver integrated circuit (IC) for short range, high speed and low power optical interconnections. An amplitude modulated signal is necessary to overcome the bottleneck of speed given by the actual VCSELs and decrease the power consumption per bit. A prototype IC is developed in a standard 130 nm BiCMOS technology. The circuit converts two single-ended input signals to a 4-level signal fed to the laser. The driver also provides the DC current and the voltage necessary to bias the VCSEL. The power dissipation of the driver is only 115 mW including both the VCSEL and the 50 Ω input single-to-differential-ended converters. To the author's knowledge this is the first 56 Gbit/s 4-PAM laser driver implemented in silicon with a power dissipation per data-rate (DR) of 2.05 mW/Gbit/s including the VCSEL making it the most power efficient, 56 Gbit/s, common cathode laser driver. The active area occupies 0.056 mm2. The small signal bandwidths are 49 GHz for the high and 43 GHz for the low amplitude amplification path, when the VCSEL is not connected. The bit error rate was tested electrically showing and error free connection at 28 GBaud/s.

References

    1. 1)
      • 10. Szczerba, K., Karlsson, M., Andrekson, P.A., Larsson, A.: ‘Intersymbol interference penalties for OOK and 4-PAM in short-range optical communications’. OFC/NFOEC, March 2013, pp. 13.
    2. 2)
    3. 3)
      • 18. Sedighi, B., Scheytt, J.C.: ‘40 Gb/s VCSEL driver IC with a new output current and pre-emphasis adjustment method’. IEEE MTT-S Microwave Symp. Digest, June 2012, pp. 13.
    4. 4)
      • 12. Ellinger, F.: ‘Radio frequency integrated circuits and technologies’ (Springer, 2007, 1st edn.).
    5. 5)
    6. 6)
    7. 7)
    8. 8)
      • 17. Proesel, J.E., Lee, B.J., Baks, C.W., Schow, C.L.: ‘35-Gb/s VCSEL-based optical link using 32-nm SOI CMOS circuits’. OFC 2013, 2013.
    9. 9)
      • 14. Watanabe, D., Ono, A., Okayasu, T.: ‘CMOS optical 4-PAM VCSEL driver with modal-dispersion equalizer for 10 Gb/s 500 m MMF transmission’. IEEE Int. Solid-State Circuits Conf., February 2009, pp. 106107.
    10. 10)
      • 15. Xiaotie, W., Dama, B., Gothokar, P., et al: ‘A 20 Gb/s NRZ/PAM-4 1 V transmitter in 40 nm CMOS driving a Si-photonic modulator in 0.13 m CMOS’. IEEE Int. Solid-State Circuits Conf., February 2013, pp. 128129.
    11. 11)
      • 13. Szczerba, K., Karlsson, M., Andrekson, P., Larsson, A., Agrell, E.: ‘35.2 Gbps 8-PAM transmission over 100 m of MMF using an 850 nm VCSEL’. European Conf. and Exhibition on Optical Communication (ECOC), September 2013, pp. 13.
    12. 12)
    13. 13)
      • 11. Razavi, B.: ‘Design of integrated circuits for optical communications’ (McGraw-Hill, 2003, 1st edn.).
    14. 14)
    15. 15)
    16. 16)
      • 1. Quadir, N., Ossieur, P., Townsend, P.D.: ‘A 56 Gb/s PAM-4 VCSEL driver circuit’. IEEE ISSC, June 2012, pp. 15.
    17. 17)
      • 3. Kuchta, M.D., Rylyakov, V.A., Schow, L.C., Proesel, E.J., Baks, C.: ‘64 Gb/s transmission over 57 m MMF using an NRZ modulated 850 nm VCSEL’. OFC 2014, 2014.
    18. 18)
      • 4. Moser, P., Lott, J.A., Wolf, P., et al: ‘Energy-efficient vertical-cavity surface-emitting lasers (VCSELs) for ‘green’ data and computer communication’. Proc. SPIE 8276, Vertical-Cavity Surface-Emitting Lasers XVI, 82760 J, February 9, 2012; http://www.dx.doi.org/10.1117/12.906856.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-cds.2014.0240
Loading

Related content

content/journals/10.1049/iet-cds.2014.0240
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address