access icon free Thermal properties of graphene and few-layer graphene: applications in electronics

The authors review thermal properties of graphene and few-layer graphene (FLG), and discuss applications of these materials in thermal management of advanced electronics. The intrinsic thermal conductivity of graphene – among the highest of known materials – is dominated by phonons near the room temperature. The examples of thermal management applications include the FLG heat spreaders integrated near the heat generating areas of the high-power density transistors. It has been demonstrated that FLG heat spreaders can lower the hot-spot temperature during device operation, resulting in improved performance and reliability of the devices.

Inspec keywords: phonons; reliability; thermal conductivity; graphene

Other keywords: high-power density transistors; phonons; heat generating areas; thermal management applications; FLG heat spreaders; few-layer grapheme; hot-spot temperature; device reliability; intrinsic thermal conductivity; advanced electronics; device operation

Subjects: Reliability; Preparation of graphene and graphene-related materials, intercalation compounds, and diamond; Fullerenes, carbon nanotubes, and related materials (engineering materials science); Thermal conduction in nonmetallic liquids; Electronic conduction in metals and alloys; Electronic structure of fullerenes and fullerene-related materials; intercalation compounds

References

    1. 1)
    2. 2)
    3. 3)
    4. 4)
      • 52. Ziman, M.: ‘Electrons and phonons’ (Clarendon Press, Oxford, 2001).
    5. 5)
    6. 6)
    7. 7)
    8. 8)
    9. 9)
    10. 10)
    11. 11)
    12. 12)
      • 5. Puttaswamy, K., Loh, G.H.: ‘Thermal analysis of a 3D die-stacked high-performance microprocessor’. Proc. 16th ACM Great Lakes Symp. on VLSI, Philadelphia, PA, USA, 2006.
    13. 13)
      • 3. Prasher, R.: ‘Thermal interface materials: historical perspective, status, and future directions’. Proc. IEEE, 2006, 94, pp. 15711586.
    14. 14)
    15. 15)
    16. 16)
    17. 17)
    18. 18)
    19. 19)
      • 58. Subrina, S., Kotchetkov, D., Balandin, A.A.: ‘Thermal management with graphene lateral heat spreaders: a feasibility study’. 12th IEEE Intersociety Conf. on Thermal and Thermomechanical Phenomena in Electronic Systems (ITherm), 2010, 2010, pp. 15.
    20. 20)
    21. 21)
    22. 22)
    23. 23)
    24. 24)
    25. 25)
    26. 26)
    27. 27)
    28. 28)
    29. 29)
    30. 30)
    31. 31)
    32. 32)
    33. 33)
    34. 34)
      • 4. Farhad, S., Whalley, D.C., Conway, P.P.: ‘Thermal interface materials – a review of the state of the art’. Electronics Systemintegration Technology Conf., 2006, 1 2006, pp. 12921302.
    35. 35)
    36. 36)
    37. 37)
    38. 38)
    39. 39)
    40. 40)
    41. 41)
    42. 42)
    43. 43)
    44. 44)
    45. 45)
    46. 46)
    47. 47)
    48. 48)
    49. 49)
    50. 50)
    51. 51)
      • 11. Stroscio, M.A., Dutta, M.: ‘Phonons in nanostructures’ (Cambridge University Press, Cambridge, United Kingdom, 2001).
    52. 52)
    53. 53)
    54. 54)
    55. 55)
    56. 56)
    57. 57)
    58. 58)
    59. 59)
    60. 60)
    61. 61)
    62. 62)
    63. 63)
    64. 64)
    65. 65)
    66. 66)
    67. 67)
    68. 68)
    69. 69)
    70. 70)
    71. 71)
    72. 72)
    73. 73)
    74. 74)
    75. 75)
    76. 76)
    77. 77)
    78. 78)
      • 81. Lee, Y.-H., Lee, J.-H.: ‘Scalable growth of free-standing graphene wafers with copper(Cu) catalyst on SiO2/Si substrate: thermal conductivity of the wafers’, Appl. Phys. Lett., 2010, 96.
    79. 79)
    80. 80)
    81. 81)
    82. 82)
      • 61. Mishra, U.K., Parikh, P., Yi-Feng, W.: ‘AlGaN/GaN HEMTs-an overview of device operation and applications’. Proc. IEEE, 2002, 90, pp. 10221031.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-cds.2014.0093
Loading

Related content

content/journals/10.1049/iet-cds.2014.0093
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading