Your browser does not support JavaScript!
http://iet.metastore.ingenta.com
1887

access icon free Battery-less non-contact temperature measurement system powered by energy harvesting from intentional human action

This paper presents a battery-less non-contact temperature measurement system powered by energy harvesting from intentional human action. The conversion between the human action and electrical energy is provided by a hand-crank electromagnetic (EM) converter. The AC voltage generated by the EM converter has time-varying amplitude and frequency and is rectified by a metal–oxide-semiconductor field-effect transistor-based voltage doubler active rectifier circuit. The harvested energy is efficiently stored into multiple capacitors by the innovative sequential charging of storage capacitors technique, and used to power a micro electro mechanical system thermopile sensor with related signal conditioning electronics plus a liquid-crystal display to visualise the temperature readings. With a force of about 29.4 N over 2 cm applied to the EM converter, the power management circuit is able to extract an energy of 27.5 mJ and power the non-contact temperature measurement system for about 33 s.

References

    1. 1)
    2. 2)
      • 9. Leicht, J., Maurath, D., Manoli, Y.: ‘Autonomous and self-starting efficient micro energy harvesting interface with adaptive MPPT, buffer monitoring, and voltage stabilization’. Proc. ESSCIRC, Bordeaux, France, September 2012, pp. 101104.
    3. 3)
      • 3. Schmidt, F.: ‘Harvesting motion energy’, Power Electron. Technol., 2013, 38, (8), pp. 1517.
    4. 4)
    5. 5)
    6. 6)
      • 5. Ferrari, M., Ferrari, V., Guizzetti, M., Marioli, D.: ‘Investigation on electrical output combination options in a piezoelectric multifrequency converter array for energy harvesting in autonomous sensors’. Proc. of Sensordevices 2010, 2010, pp. 258263.
    7. 7)
    8. 8)
    9. 9)
    10. 10)
    11. 11)
    12. 12)
      • 16. Saggini, S., Ongaro, F., Galperti, C., Mattavelli, P.: ‘Supercapacitor-based hybrid storage systems for energy harvesting in wireless sensor networks’. 2010 Twenty-Fifth Annual IEEE Applied Power Electronics Conf. and Exposition (APEC), 2010, pp. 22812287.
    13. 13)
      • 23. Alghisi, D., Ferrari, M., Ferrari, V.: ‘Active rectifier circuits with sequential charging of storage capacitors (SCSC) for energy harvesting in autonomous sensors’. Procedia Engineering: Proc. Eurosensors XXV, Athens, Greece, September 2011, vol. 25, pp. 211214.
    14. 14)
    15. 15)
    16. 16)
    17. 17)
      • 7. Rahimi, A., Zorlu, Ö., Muhtaroğlu, A., Külah, H.: ‘A compact electromagnetic vibration harvesting system with high performance interface electronics’. Procedia Engineering: Proc. Eurosensors XXV, Athens, Greece, September 2011, vol. 25, pp. 215218.
    18. 18)
    19. 19)
      • 11. Marinkovic, D., Frey, A., Kuehne, I., Scholl, G.: ‘A new rectifier and trigger circuit for a piezoelectric microgenerator’. Procedia Chemistry: Proc. Eurosensors XXIII, Lausanne, Switzerland, September 2009, vol. 1, (1), pp. 14471450.
    20. 20)
    21. 21)
    22. 22)
    23. 23)
      • 22. Elliott, A.D.T., Mitcheson, P.D.: ‘Implementation of a single supply pre-biasing circuit for piezoelectric energy harvesters’. Procedia Engineering: Proc. Eurosensors XXVI, Kraków, Poland, September 2012, vol. 47, pp. 13111314.
    24. 24)
    25. 25)
      • 25. López, T., Elferich, R., Alarcón, E.: ‘Third quadrant DC output characteristics of low voltage trench MOSFETs’ in Springer New York (Ed.): ‘Voltage regulators for next generation microprocessors’ (Springer ScienceþBusiness Media, LLC,2011), pp. 285299.
    26. 26)
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-cds.2013.0437
Loading

Related content

content/journals/10.1049/iet-cds.2013.0437
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address