access icon free Experimental analysis of fibre non-linearity on second harmonic optical microwave radio-over-fibre system

In this study, the authors propose an optical microwave (MW) radio-over-fibre system in which an integrated dual-parallel Mach–Zehnder modulator (DP-MZM) is biased at the maximum transmission biasing point. A single drive Mach–Zehnder modulator, in series with the DP-MZM, is used to modulate the 1 GHz radio frequency data onto the optical carrier. They characterise the efficiency of the practical system in terms of power penalty and error vector magnitude. Two modulation schemes are investigated, namely binary phase shift keying (BPSK) and quadrature phase shift keying (QPSK) over fibre spans of 10 and 25 km of standard single mode fibre. The results show that the second-order sideband of MW has the potential to provide error free transmission for BPSK and QPSK. The error free communication system is achieved for BPSK at 10 and 25 km fibre spans at optical launch power (OLP) of 7 dBm, whereas for QPSK, the OLP is ∼11 and ∼12 dBm for 10 and 25 km fibre spans, respectively.

Inspec keywords: optical modulation; radio-over-fibre; quadrature phase shift keying

Other keywords: integrated dual-parallel Mach-Zehnder modulator; quadrature phase shift keying; integrated DP-MZM; BPSK; maximum transmission biasing point; fibre nonlinearity; modulation scheme; optical MW radio-over-fibre system; single-drive Mach-Zehnder modulator; fibre span; power penalty; error-free communication system; second harmonic optical microwave radio-over-fibre system; binary phase shift keying; second-order sideband; standard single-mode fibre; optical carrier; optical launch power; error-free transmission; error vector magnitude; QPSK

Subjects: Optical fibre networks; Modulation and coding methods; Microwave photonics

References

    1. 1)
      • 7. Hsueh, Y.T.: ‘Frontiers of optical networking technologies: millimetre-wave radio-over-fibre and 100G transport system for next-generation high-data-rate applications’. PhD thesis, School of Electrical and Computer Engineering, Georgia Institute of Technology, 2012.
    2. 2)
      • 5. Eldin, S.: ‘Radio over fibre distribution systems for ultra-wide band and millimetre wave applications’. PhD thesis, Dublin City University, 2011.
    3. 3)
      • 2. Zhouyue, P., Khan, F.: ‘An introduction to millimetre-wave mobile broadband systems’, IEEE Commun. Mag., 2011, 49, pp. 101107.
    4. 4)
    5. 5)
    6. 6)
      • 16. Binh, L.N.: ‘Optical fibre communications systems: theory and practice with MATLAB and Simulink models’ (CRC Press/Taylor & Francis, 2010).
    7. 7)
    8. 8)
    9. 9)
      • 17. Qi, C., Pei, L., Ning, T., Gao, S., Zhuoxuan, L., Ruifeng, Z.: ‘A new kind of MZM and EDF-loop based flat microwave photonic filter’. Proc. Int. Conf. Advanced Intelligence and Awareness Internet (AIAI), 2010, pp. 371374.
    10. 10)
      • 18. ETSI DTR/ERM-RM-049: ‘Electromagnetic compatibility and radio spectrum matters (ERM), system reference document, and technical characteristics of multiple gigabit wireless systems in the 60 GHz range’. March 2006.
    11. 11)
    12. 12)
    13. 13)
    14. 14)
    15. 15)
      • 19. Linghao, C., Aditya, S.: ‘Analytical estimate for nonlinear distortion due to fiber in SCM-WDM lightwave system’. Proc. Int. Conf. Communications Systems, ICCS 2004, Sept. 2004, pp. 17.
    16. 16)
    17. 17)
    18. 18)
    19. 19)
    20. 20)
    21. 21)
      • 3. R-yohsae, U., Promwong, S., Sukutanmatanti, N.: ‘Interference signal analysis of IEEE 802.15.1 to RFID communication system at 2.45 GHz’. Proc. Int. Conf. Computer and Communication Engineering ICCCE, 2008, pp. 10001004.
    22. 22)
    23. 23)
      • 6. Madjar, A., Berceli, T.: ‘Microwave generation by optical techniques–a review’. Proc. Int. Conf. 36th European Microwave Conference, 2006, pp. 10991102.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-cds.2013.0425
Loading

Related content

content/journals/10.1049/iet-cds.2013.0425
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading