access icon free Analysis and implementation of low-power perceptual multiband noise reduction for the hearing aids application

Traditional noise reduction designs provide good performance but suffer from high complexity and long latency, which limits their application to hearing aids. Targeted for strict low-power and low-latency requirement of completely-in-the-canal type hearing aids, this study analyses and implements a previously proposed sample-based perceptual multiband spectral subtraction with a multiplication-based entropy voice activity detection. Simulation results reveal that the authors design can provide similar speech quality as others, but with lower computational complexity and simple control effort. The corresponding core-based architecture design further exploits processing characteristics of the proposed approach to reduce power consumption with a sign-magnitude and a preprocessed input data reuse scheme. Chip measurement shows that the design only consumes 83.7 µW at 0.6 V operation with 90 nm high threshold voltage (HVT) (high VT ) standard cell library.

Inspec keywords: circuit noise; network synthesis; low-power electronics; hearing aids; circuit complexity

Other keywords: multiplication-based entropy voice activity detection; speech quality; computational complexity; power consumption; voltage 0.6 V; chip measurement; core-based architecture design; power 83.7 muW; hearing aids application; low-power perceptual multiband noise reduction

Subjects: Prosthetics and orthotics; General circuit analysis and synthesis methods

References

    1. 1)
      • 31. Chang, K.C., Kuo, Y.T., Lin, T.J., Liu, C.W.: ‘Complexity-effective dynamic range compression for digital hearing aids’. Proc. IEEE Int. Symp. Circuits and Systems, Paris, France, June 2010, pp. 23782381.
    2. 2)
    3. 3)
      • 30. Kuo, Y.T., Lin, T.J., Chang, W.H., Liu, Y.T., Liu, C.W.: ‘Complexity-effective auditory compensation for digital hearing aids’. Proc. Int. Symp. Circuits and Systems, Seattle, Washington, USA, May 2008, pp. 14721475.
    4. 4)
      • 32. Kuo, Y.T.: ‘Low-power auditory compensation for digital hearing aids’, PhD dissertation, Institute Electronics Engineering, National Chiao-Tung University, 2011.
    5. 5)
      • 6. Gingsjo, A.L.: ‘On transient noise and its reduction in hearing aids’, PhD thesis, Department of Applied Electronics, Chalmers University of Technology, 1997.
    6. 6)
    7. 7)
    8. 8)
      • 12. Berouti, M., Schwartz, M., Makhoul, J.: ‘Enhancement of speech corrupted by acoustic noise’. Proc. Int. Conf. Acoustics, Speech, Signal Processing, Washington, DC, USA, April 1979, pp. 208211.
    9. 9)
      • 8. Schaub, A., Straub, P.: ‘Spectral sharpening for speech enhancement/noise reduction’. Proc. Int. Conf. Circuit Systems, Toronto, Ontario, Canada, May 1991, pp. 993996.
    10. 10)
      • 19. DiGiovanni, J.J.: ‘Hearing aid handbook 2011’ (Delmar, Cengage Learning, 2011, 1st edn.).
    11. 11)
    12. 12)
      • 28. Wei, C.W., Kuo, Y.T., Chang, K.C., Tsai, C.C., Lin, J.Y., FanJiang, Y., Tu, M.H., Liu, C.W., Chang, T.S., Jou, S.J.: ‘A low-power Mandarin-specific hearing aid chip’. Proc. IEEE Asian Solid-State Circuits Conf., Beijing, China, November 2010, pp. 333336.
    13. 13)
      • 37. Chang, J.H.: ‘Effect comparison of hearing aids prescriptions on Mandarin speech perception’, Master thesis, Institute Biomedical Engineering, National Yang-Ming University, 2005.
    14. 14)
    15. 15)
    16. 16)
      • 34. Venkat, K.: ‘Efficient multiplication and division using MSP430’ (Texas Instruments, 2006).
    17. 17)
    18. 18)
      • 26. ANSI S1.11–2004: ‘Specification for octave-band and fractional-octave-band analog and digital filters’, 2004.
    19. 19)
    20. 20)
      • 38. Available at http://www.spib.rice.edu/spib/select_noise.html, accessed July 2012.
    21. 21)
    22. 22)
      • 10. Levitt, H., Bakke, M., Kates, J., Neuman, A., Schwander, T., Weiss, M.: ‘Signal processing for hearing impairment’, Scand. Audiol., 1993, 38, pp. 719.
    23. 23)
      • 22. Jia, C., Xu, B.: ‘An improved entropy-based endpoint detection algorithm’, Int. Symp. Chinese Spoken Language Processing, Taipei, Taiwan, ROC, August 2002, pp. 9699.
    24. 24)
      • 5. Kates, J.M.: ‘Signal processing for hearing aids’, Hear. Instrum., 1986, 37, pp. 1921.
    25. 25)
    26. 26)
    27. 27)
      • 4. Schaub, A.: ‘Digital hearing aids’ (Thieme Medical Publishers, 2008, 1st edn.).
    28. 28)
    29. 29)
    30. 30)
      • 16. Kamath, S., Loizou, P.: ‘A multi-band spectral subtraction method for enhancing speech corrupted by colored noise’. Proc. IEEE Int. Conf. Acoustics Speech Signal Processing, Orlando, FL, USA, May 2002, p. 4164.
    31. 31)
      • 2. Kates, J.M.: ‘Digital hearing aids’ (Plural Publishing, 2008, 1st edn.).
    32. 32)
      • 24. Wei, C.W., Tsai, C.C., Chang, T.S., Jou, S.J.: ‘Perceptual multiband spectral subtraction for noise reduction in hearing aids’. Proc. IEEE Asia Pacific Conf. Circuits Systems, Kuala Lumpur, Malaysia, December 2010, pp. 692695.
    33. 33)
    34. 34)
      • 20. Dillon, H.: ‘Hearing aids’ (Boomerang Press, Sydney, Thieme, 2000).
    35. 35)
      • 1. Loizou, P.C.: ‘Speech enhancement, theory and practice’ (CRC Press, 2007, 1st edn.).
    36. 36)
      • 36. Available at http://www.rocling.iis.sinica.edu.tw/CKIP/engversion/20corpus.htm, accessed June 2013.
    37. 37)
      • 25. Chang, J.H., Tsai, K.S., Li, P.C., Young, S.T.: ‘Computer-aided simulation of multi-channel WDRC hearing aids’. 17th Annual Convention & Expo of the American Academy of Audiology, Reston, Virginia, USA, March 2005.
    38. 38)
    39. 39)
    40. 40)
      • 18. Rama Rao, C.V., Rama Murthy, M.B., Srinivasa Rao, K.: ‘Noise reduction using Mel-SCALE spectral subtraction with perceptually defined subtraction parameters – a new scheme’, Signal Image Process., 2011, 2, (1), pp. 135149.
    41. 41)
    42. 42)
      • 35. Jiang, J.: ‘General guide to implement logarithmic and exponential operations on a fixed-point DSP’ (Texas Instruments, 1999).
    43. 43)
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-cds.2013.0326
Loading

Related content

content/journals/10.1049/iet-cds.2013.0326
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading