access icon free Circuit theory approach for voltage stability assessment of reconfigured power network

This study presents a circuit theory approach for voltage stability assessment in an interconnected power network. Here, an interconnected IEEE 14-bus network has been reconfigured into 12-, 10- and 8-bus networks using graph theory. The line index indicator has been used for voltage stability assessment under normal and faulted conditions for the original (IEEE 14-bus) and the reconfigured (12-, 10- and 8-bus) networks. Genetic algorithm tool in MATLAB has been used to determine the optimal operating condition with best voltage stability for the original and the reconfigured networks. The results have shown that the voltage stability assessment under normal and faulted conditions can be effectively determined for the reconfigured networks compared with the original network.

Inspec keywords: power system stability; genetic algorithms; power system faults; graph theory; power system interconnection

Other keywords: graph theory; reconfigured power network; IEEE 12-bus networks; IEEE 10-bus networks; optimal operating condition; circuit theory approach; voltage stability assessment; IEEE 8-bus networks; interconnected power network; genetic algorithm; interconnected IEEE 14-bus network; line index indicator; Matlab

Subjects: Power system control; Optimisation techniques; Combinatorial mathematics; Power system management, operation and economics

References

    1. 1)
      • 29. Deo, N.: ‘Graph theory with applications to engineering and computer science’ (Prendice Hall of India, 1984, 1st edn.).
    2. 2)
    3. 3)
    4. 4)
    5. 5)
      • 6. Tran, M.T.: ‘Definition and implementation of voltage stability indices in PSS R NETOMAC’. A Thesis, Department of Energy and Environment, Chalmers University of Technology, Sweden, 2009.
    6. 6)
    7. 7)
    8. 8)
      • 1. Kayal, P., Chanda, S., Chanda, C.K.: ‘Determination of voltage stability in distribution network using ANN technique’, Int. J. Electr. Eng. Inf., 2012, 4, (2), pp. 347360.
    9. 9)
      • 28. Kundur, P.: ‘Power system stability and control’ (McGraw Hill, 1994).
    10. 10)
    11. 11)
    12. 12)
      • 11. Aghamohammadi, M.R., Hashemi, S., Ghazizadeh, M.S.: ‘Improving voltage stability margin using voltage profile and sensitivity analysis by neural network’, Iran. J. Electr. Electron. Eng., 2011, 7, (1), pp. 3341.
    13. 13)
      • 13. Santosh, B.K., Rajan, H.C.: ‘MATLAB/SIMULINK simulation tool for power systems’, Int. J. Power Syst. Oper. Energy Manage., 2011, 1, (2), pp. 3338.
    14. 14)
      • 4. Chowdhury, D., Singha, S.: ‘A coding based approach to load flow analysis using krylov subspace methods for well conditioned systems’, Int. J. Soft Comput. Eng., 2012, 1, (6), pp. 158161.
    15. 15)
      • 12. Senthil Kumar, S., Ajay, D., Vimal Raj, P.: ‘Fuzzy based stability index power system voltage stability enhancement’, Int. J. Comput. Electr. Eng., 2010, 2, (1), pp. 17938163.
    16. 16)
      • 2. Chakravorty, J., Chakravort, S., Ghosh, S.: ‘A fuzzy based efficient load flow analysis’, Int. J. Comput. Electr. Eng., 2009, 1, (4), pp. 17938163.
    17. 17)
      • 19. Sarkar, D., De, A., Chanda, C.K., Goswami, S.: ‘Genetic algorithm based on line power network reconfiguration for voltage stability improvement’, IJEST, 2010, 3, (9), pp. 41674174.
    18. 18)
      • 10. Subramani, C., Dash, S.S., Arun Bhaskar, M., Jagdeshkumar, M.: ‘Simulation technique for voltage stability Analysis and contingency ranking in power systems’, Int. J. Recent Trends Eng., 2009, 2, (5), pp. 263267.
    19. 19)
      • 8. Kotipalli, S., Rambabu, C.: ‘Adaptive load shedding scheme to ensure frequency and voltage stability’, Int. J. Eng. Trends Technol., 2012, 31, (5), pp. 605609.
    20. 20)
    21. 21)
    22. 22)
      • 22. Sarkar, D., Goswami, S., De, A., Chanda, C.K.: ‘ANN based voltage stability improvement using power network reconfiguration’, Int. J. Recent Trend Eng., 2010, 3, (3), pp. 167171.
    23. 23)
    24. 24)
      • 14. Srivastava, R.K., Choube, S.C., Arya, L.D.: ‘Voltage stability assessment using sensitivity under line outage condition’, Int. J. Emerg. Technol., 2011, 2, (1), pp. 7882.
    25. 25)
      • 18. Sarkar, D., Goswami, S., De, A., Chanda, C.K., Mukhopadhyay, A.K.: ‘Improvement of voltage stability margin in a reconfigured radial power network using graph theory’, Can. J. Electr. Electron. Eng., 2011, 2, (9), pp. 454462.
    26. 26)
      • 21. Sarkar, D., De, A., Chandaand, C.K., Goswami, S.: ‘ANN based online voltage stability monitoring for distribution feeder reconfiguration’, Int. J. Electr. Eng. , 2010, 3, (1), pp. 231240.
    27. 27)
      • 16. Aghamohammadi, M.R., Hashemi, S.S., Ghazizadeh, M.S.: ‘A novel index for online voltage stability assessment based on correlation characteristic of voltage profiles’, Iran. J. Electr. Electron. Eng., 2011, 7, (2), pp. 131140.
    28. 28)
      • 23. Kumaraswamy, I., Jahnavi, W.V., Devaraju, T., Ramesh, P.: ‘An optimal power flow method with improved voltage stability analysis’. Proc. World Congress on Engineering, London, July 2012, pp. 18.
    29. 29)
      • 27. Morton, A.B.: ‘A guide to steady state voltage stability analysis’, Econnect, 2007, pp. 126.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-cds.2013.0325
Loading

Related content

content/journals/10.1049/iet-cds.2013.0325
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading