Your browser does not support JavaScript!
http://iet.metastore.ingenta.com
1887

access icon free SiC and GaN devices – wide bandgap is not all the same

Silicon carbide (SiC)-diodes have been commercially available since 2001 and various SiC-switches have been launched recently. Parallelly, gallium nitride (GaN) is moving into power electronics and the first low-voltage devices are already on the market. Currently, it seems that GaN-transistors are ideal for high frequency ICs up to 1kV (maybe 2kV) and maximum a few 10A. SiC transistors are better suited for discrete devices or modules blocking 1kV and above and virtually no limit in the current but in that range they will face strong competition from the silicon insulated gate bipolar transistors (IGBTs). SiC and GaN Schottky-diodes would offer a similar performance, hence here it becomes apparent that material cost and quality will finally decide the commercial success of wide bandgap devices. Bulk GaN is still prohibitively expensive, whereas GaN on silicon would offer an unrivalled cost advantage. Devices made from the latter could be even cheaper than silicon devices. However, packaging is already a limiting factor for silicon devices even more so in exploiting the advantage of wide bandgap materials with respect to switching speed and high temperature operation. After all, reliability is a must for any device no matter which material it is made of.

References

    1. 1)
    2. 2)
    3. 3)
      • 54. Morita, T., Yanagihara, M., Ishida, H., et al: ‘650 V 3.1 mΩcm2 GaN-based monolithic bidirectional switch using normally-off gate injection transistor’. Tech. Digest of the IEDM'07, Washington DC, USA, 2007, pp. 865868.
    4. 4)
      • 11. Cree Inc., press release on www.cree.com, 14 May 2013.
    5. 5)
      • 26. Sumitomo, M., Sakane, H., Arakawa, K., Higuchi, Y., Matsui, M.: ‘Low loss IGBT with partially narrow mesa structure (PNM-IGBT)’. Proc. of the ISPSD'12, Bruges, Belgium, 2012, pp. 1720.
    6. 6)
      • 1. Shockley, W.: ‘Introductory remarks in silicon carbide, a high temperature semiconductor’ (Pergamon Press, 1960).
    7. 7)
    8. 8)
      • 10. Bjoerk, F., Hancock, J., Treu, M., Rupp, R., Reimann, T.: ‘2nd Generation 600 V SiC schottky diodes use merged pn/schottky structure for surge overload protection’. Proc. of the APEC'06, Dallas TX, USA, 2006, pp. 170173.
    9. 9)
    10. 10)
      • 15. Domes, D., Messelke, C., Kanschat, P.: ‘1st industrialized 1200 V SiC JFET module for high energy efficiency applications’. Proc. of the PCIM Europe 2011, Nuremberg, Germany, 2011, pp. 567572.
    11. 11)
      • 68. Nakagawa, A.: ‘Theoretical investigation of silicon limit characteristics of IGBT’. Proc. of the ISPSD'06, Naples, Italy, 2006, pp. 58.
    12. 12)
      • 38. Dahlquist, F., Zetterling, C.M., Östling, M., Rottner, K.: ‘Junction barrier schottky diodes in 4H-SiC and 6H-SiC’. Proc. of the ICSCIII-N'97, Mat. Sci. Forum, 1998, vol. 264–268, pp. 10611064.
    13. 13)
      • 42. Hilt, O., Brunner, F., Cho, E., Knauer, A., Bahat-Treidel, E., Würfl, J.: ‘Normally-off high-voltage p-GaN Gate GaN HFET with carbon-doped buffer’. Proc. of the ISPSD'11, San Diego CA, USA, 2011, pp. 239242.
    14. 14)
      • 21. Cree, Inc., press release on www.cree.com, 17 January 2011.
    15. 15)
    16. 16)
    17. 17)
      • 12. Hilsenbeck, J., Björk, F., Bergner, W.: ‘A Mature 1200 V SiC JFET technology optimized for efficient and reliable switching’. Proc. of the PCIM Europe 2011, Nuremberg, Germany, 2011, pp. 562566.
    18. 18)
      • 3. Kaminski, N.: ‘State of the art and the future of wide band-gap devices’. Proc. of the EPE 2009, Barcelona, Spain, 2009.
    19. 19)
    20. 20)
    21. 21)
      • 4. Kanechika, M., Uesugi, T., Kachi, T.: ‘Advanced SiC and GaN power electronics for automotive systems’. Tech. Digest of the IEDM'10, San Francisco CA, USA, 2010, pp. 324327.
    22. 22)
      • 60. Appels, J.A., Vaes, H.M.J.: ‘High voltage thin layer devices (RESURF devices)’. Tech. Digest of the IEDM'79, Washington DC, USA, 1979, pp. 238241.
    23. 23)
      • 9. GeneSiC Semiconductor Inc., press release in Bodo's Power Systems, July 2013, see also www.genesicsemi.com.
    24. 24)
      • 8. Infineon Technologies AG, press release INFPMM201209.066e on www.infineon.com, 26 September 2012.
    25. 25)
      • 37. Held, R., Kaminski, N., Niemann, E.: ‘SiC merged p-n/schottky rectifiers for high voltage applications’. Proc. of the ICSCIII-N'97, Mat. Sci. Forum, 1998, vol. 264–268, pp. 10571060.
    26. 26)
      • 25. Sakakibara, J., Noda, Y., Shibata, T., Nogami, S., Yamaoka, T., Yamaguchi, H.: ‘600 V-class super junction MOSFET with high aspect ratio P/N columns structure’. Proc. of the ISPSD'08, Orlando FL, USA, 2008, pp. 299302.
    27. 27)
    28. 28)
    29. 29)
      • 61. Huang, W., Chow, T.P., Niiyama, Y., Nomura, T., Yoshida, S.: ‘Lateral implanted RESURF GaN MOSFETs with BV up to 2.5 kV’. Proc. of the ISPSD'08, Orlando FL, USA, 2008, pp. 291294.
    30. 30)
    31. 31)
    32. 32)
      • 24. Moens, P., Bogman, F., Ziad, H., et al: ‘UltiMOS: a local charge-balanced trench-based 600 V super-junction device’. Proc. of the ISPSD'11, San Diego CA, USA, 2011, pp. 304307.
    33. 33)
      • 27. Nakamura, T., Nakano, Y., Aketa, M., et al: ‘High performance SiC trench devices with ultra-low Ron’. Tech. Digest of the IEDM'11, Washington DC, USA, 2011, pp. 599601.
    34. 34)
      • 45. Ikeda, N., Tamura, R., Kokawa, T., et al: ‘Over 1.7 kV normally-off GaN hybrid MOS-HFETs with a lower on-resistance on a Si substrate’. Proc. of the ISPSD'11, San Diego CA, USA, 2011, pp. 284287.
    35. 35)
      • 7. De Jaeger, B., Van Hove, M., Wellekens, D., Decoutere, S., et al: ‘Au-free CMOS-compatible AlGaN/GaN HEMT processing on 200 mm Si substrates’. Proc. of the ISPSD'12, Bruges, Belgium, 2012, pp. 4952.
    36. 36)
      • 23. Sheridan, D.C., Chatty, K., Bondarenko, V., Casady, J.B.: ‘Reverse conduction properties of vertical SiC trench JFETs’. Proc. of the ISPSD'12, Bruges, Belgium, 2012, pp. 385388.
    37. 37)
    38. 38)
      • 49. Shi, J., Eastman, L.F., Xin, X.B., Pophristic, M.: ‘High performance AlGaN/GaN power switch with HfO2 insulation’, Appl. Phys. Lett., 2009, 95, (4) 042103, http://dx.doi.org/10.1063/1.3190506.
    39. 39)
      • 20. Ryu, S.-H., Cheng, L., Dhar, S., et al: ‘A 3.7 mΩ-cm2, 1500 V 4H-SiC DMOSFETs for advanced high power, high frequency applications’. Proc. of the ISPSD'11, San Diego CA, USA, 2011, pp. 227230.
    40. 40)
      • 22. Domeij, M., Konstantinov, A., Lindgren, A., Zaring, C., Gumaelius, K., Reimark, M.: ‘Large area 1200 V SiC BJTs with β > 100 and ρON < 3 mΩcm2’. Proc. of the ICSCRM'11, Cleveland OH, USA, 2011, Mat. Sci. Forum, 2012, vol. 717–720, pp. 11231126.
    41. 41)
      • 34. Ryu, S.-H., Capell, C., Jonas, C., et al: ‘Ultra high voltage (>12 kV), high performance 4H-SiC IGBTs’. Proc. of the ISPSD'12, Bruges, Belgium, 2012, pp. 257260.
    42. 42)
      • 67. Lidow, A., Strydom, J., de Rooij, M., Ma, Y.: ‘GaN transistors for efficient power conversion’ (Power Conversion Publication, El Segundo, 2012).
    43. 43)
      • 16. Sheridan, D.C., Ritenour, A., Bondarenko, V., Casady, J.B., Kelley, R.L.: ‘Low switching energy 1200 V normally-off SiC VJFET power modules’. Proc. of the ECSCRM'10, Mat. Sci. Forum, 2011, vol. 679–680, pp. 583586.
    44. 44)
      • 55. Nakajima, A., Unni, V., Menon, K.G., et al: ‘GaN-based bidirectional super HFETs using polarization junction concept on insulator substrate’. Proc. of the ISPSD'12, Bruges, Belgium, 2012, pp. 265268.
    45. 45)
    46. 46)
      • 35. Cheng, L., Agarwal, A., O'Loughlin, M., et al: ‘Advanced silicon carbide gate turn-off thyristor for energy conversion and power grid applications’. Proc. of the ECCE'12, Raleigh, NC, USA, 2012, pp. 22492252.
    47. 47)
      • 59. Uesugi, T., Kachi, T.: ‘GaN power switching devices for automotive applications’. Proc. of the CS MANTECH Conf. 2009, Tampa FL, USA, 2009.
    48. 48)
    49. 49)
      • 63. Umezawa, H., Shikata, S.: ‘Diamond high-temperature power devices’. Proc. of the ISPSD'09, Barcelona, Spain, 2009, pp. 259262.
    50. 50)
      • 28. Bolotnikov, A., Losee, P., Matocha, K., et al: ‘3.3 kV SiC MOSFETs designed for low on-resistance and fast switching’. Proc. of the ISPSD'12, Bruges, Belgium, 2012, pp. 389392.
    51. 51)
    52. 52)
      • 14. Tanaka, Y., Yano, K., Okamoto, M., et al: ‘Fabrication of 700 V SiC-SIT with ultra-low on-resistance of 1.01 mΩ·cm2’. Proc. of the ICSCRM'05, Mat. Sci. Forum, 2006, vol. 527–529, pp. 12191222.
    53. 53)
    54. 54)
      • 62. Yamasaki, S., Makino, T., Takeuchi, D., et al: ‘Potential of diamond power devices’. Proc. of the ISPSD'13, Kanazawa, Japan, 2013, pp. 307310.
    55. 55)
      • 65. Umezawa, H., Kato, Y., Shikata, S.: ‘High temperature operation of diamond power SBD’. Proc. of the ISPSD'13, Kanazawa, Japan, 2013, pp. 187190.
    56. 56)
    57. 57)
      • 19. Harada, S., Kato, M., Suzuki, K., et al: ‘1.8 mΩcm², 10 A power MOSFET in 4H-SiC’. Tech. Digest of the IEDM'06, San Francisco CA, USA, 2006.
    58. 58)
      • 2. Elasser, A., Agamy, M., Nasadoski, J., et al: ‘Static and dynamic characterization of 6.5 kV, 100 A SiC Bipolar PiN diode modules’. Proc. of the ECCE'12, Raleigh, NC, USA, 2012, pp. 35953602.
    59. 59)
      • 31. Domeij, M., Konstantinov, A., Lindgren, A., Zaring, C., Gumaelius, K., Reimark, M.: ‘Large area 1200 V SiC BJTs with β > 100 and ρON < 3 mΩcm2’. Proc. of the ICSCRM'11, Mat. Sci. Forum, 2012, vol. 717–720, pp. 11231126.
    60. 60)
      • 13. Sheridan, D., Ritenour, A., Bondarenko, V., Burks, P., Casady, J.B.: ‘Record 2.8 mΩ-cm² 1.9 kV enhancement-mode SiC VJFETs’. Proc. of the ISPSD'09, Barcelona, Spain, 2009, pp. 335338.
    61. 61)
      • 32. Balachandran, S., Li, C., Losee, P.A., Bhat, I.B., Chow, T.P.: ‘6 kV 4H-SiC BJTs with specific on-resistance below the unipolar limit using a selectively grown base contact process’. Proc. of the ISPSD'07, Jeju, Korea, 2007, pp. 293296.
    62. 62)
      • 47. Kim, J., Hwang, S., Hwang, I., et al: ‘High threshold voltage p-GaN gate power devices on 200 mm Si’. Proc. of the ISPSD'13, Kanazawa, Japan, 2013, pp. 315318.
    63. 63)
    64. 64)
      • 52. Uemoto, Y., Shibata, D., Yanagihara, M., et al: ‘8300 V blocking voltage AlGaN/GaN power HFET with thick poly-AlN passivation’. Tech. Digest of the IEDM'07, Washington DC, USA, 2007, pp. 861864.
    65. 65)
    66. 66)
      • 53. Hilt, O., Knauer, A., Brunner, F., Bahat-Treidel, E., Würfl, J.: ‘Normally-off AlGaN/GaN HFET with p-type GaN Gate and AlGaN Buffer’. Proc. of the ISPSD'10, Hiroshima, Japan, 2010, pp. 347350.
    67. 67)
      • 56. Uemoto, Y., Morita, T., Ikoshi, A., et al: ‘GaN monolithic inverter IC using normally-off gate injection transistors with planar isolation on Si substrate’. Tech. Digest of the IEDM'09, Baltimore MD, USA, 2009, pp. 165168.
    68. 68)
      • 36. Disney, D., Nie, H., Edwards, A., Bour, D., Shah, H., Kizilyalli, I.C.: ‘Vertical power diodes in bulk GaN’. Proc. of the ISPSD'13, Kanazawa, Japan, 2013, pp. 5962.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-cds.2013.0223
Loading

Related content

content/journals/10.1049/iet-cds.2013.0223
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address