access icon free Optimisation of the reverse conducting IGBT for zero-voltage switching applications such as induction cookers

The reverse conducting-IGBT (RC-IGBT) is a well suited device for soft switching applications, that is, zero voltage switching (ZVS). However, standard RC-IGBTs are optimised for hard switching, which shows different switching waveforms compared with soft switching. In this study, the optimisation of the RC-IGBT is described for soft switching applications using the example of an induction cooker. The investigated induction cooker is implemented by using the single-ended quasi-resonant topology. Simulations show that main losses of the induction cooker occur in the induction coil and the RC-IGBT (power switch). The performance of the coil can be improved mainly by minimising the coil resistance. The IGBT-optimisation is based on the reduction of tail current in the soft switching mode. The IGBT thickness is decreased and the local lifetime is used to achieve lower tail current. A reduction of the overall losses by 30% is achievable. As a result, the cooling system of the IGBT can be smaller and cheaper.

Inspec keywords: zero voltage switching; resonant power convertors; insulated gate bipolar transistors; induction heating; domestic appliances

Other keywords: cooling system; RC-IGBT; local lifetime; switching waveforms; power switch; coil resistance; soft switching mode; hard switching; zero-voltage switching application; induction cooker; single-ended quasiresonant topology; induction coil; reverse conducting-IGBT optimization; tail current reduction

Subjects: Domestic appliances; Power electronics, supply and supervisory circuits; Bipolar transistors; Insulated gate field effect transistors

References

    1. 1)
    2. 2)
      • 32. Oh, K.-H., Kim, Y.-C., Lee, K.-Y., Kim, S.-S., Yun, C.-M.: ‘Investigation of 1500 V non-punch through IGBT using carrier lifetime control and anode engineering’. IEEE Power Electronics Specialists Conf. (PESC), Jeju, June 2006, pp. 15.
    3. 3)
      • 6. Kimmer, T., Oehmen, J., Tuerkes, P., Voss, S.: ‘Reverse conducting IGBT – a new technology to increase the energy efficiency of induction cookers’. IEEE Power Electronics Specialists Conf. (PESC), Rhodes, June 2008, pp. 22842287.
    4. 4)
      • 15. Kwon, Y.S., Yoo, S.B., Hyun, D.S.: ‘Half-bridge series resonant inverter for induction heating applications with load-adaptive PFM control strategy’. IEEE Applied Power Electronics Conf. and Exposition (APEC), Dallas, 1999, vol. 1, pp. 575581.
    5. 5)
      • 9. Hernandez, P., Monterde, F., Burdio, J.M., Garcia, J.R., Llorente, S.: ‘Power losses distribution in the Litz-wire winding of an inductor for an induction cooking appliance’. Annual Conf. on IEEE Industrial Electronics Society (IECON), Sevilla, Spain, 2002, vol. 2, pp. 11341137.
    6. 6)
      • 25. Lu, Y., Cheng, K.W.E., Chan, K.W., Sun, Z.G., Zhao, S.W.: ‘Development of a commercial induction cooker’. Int. Conf. Power Electronics Systems and Applications (PESA), Hong Kong, May 2009, pp. 13.
    7. 7)
    8. 8)
      • 28. Sinha, D., Sadhu, P.K., Pal, N., Bandyopadhyay, A.: ‘Computation of inductance and AC resistance of a twisted Litz-wire for high frequency induction cooker’. Int. Conf. on Industrial Electronics Control & Robotics (IECR), Orissa, December 2010, pp. 8590.
    9. 9)
      • 23. Rahimo, M., Kopta, A., Schlapbach, U., Vobecky, J., Schnell, R., Klaka, S.: ‘The Bi-mode Insulated Gate Transistor (BiGT) a potential technology for higher power applications’. Proc. Int. Symp. on Power Semiconductor Devices and ICs (ISPSD), Barcelona, 2009, pp. 283286.
    10. 10)
      • 29. Martinez, B., Li, R., Ma, K., Xu, D.: ‘Hard switching and soft switching inverters efficiency evaluation’. Int. Conf. on Electrical Machines and Systems (ICEMS), Wuhan, 2008, pp. 17521757.
    11. 11)
      • 22. Takahashi, H., Yamamoto, A., Anon, S., Minato, T.: ‘1200 V reverse conducting IGBT’. Proc. Int. Symp. on Power Semiconductor Devices and ICs (ISPSD), May 2004, pp. 133136.
    12. 12)
    13. 13)
      • 20. Huesken, H., Stueckler, F.: ‘Fieldstop IGBT with MOS-like (tail-less) turn-off’. Proc. Int. Symp. on Power Semiconductor Devices and ICs (ISPSD), Cambridge, UK, 2003, pp. 338340.
    14. 14)
    15. 15)
      • 27. Hediehloo, M., Akhbari, M.: ‘New approach in design of planar coil of induction cooker based on skin and proximity effects analysis’. IEEE Int. Conf. on Industrial Technology (ICIT), Gippsland, February 2009, pp. 16.
    16. 16)
      • 5. Voss, S., Hellmund, O., Frank, W.: ‘New IGBT concepts for consumer power applications’. IEEE Conf. Record Industry Applications Conf. (IAS), New Orleans, September 2007, pp. 10381043.
    17. 17)
    18. 18)
      • 11. Liu, K.H., Oruganti, R., Lee, F.C.: ‘Resonant switches-Topologies and characteristics’. IEEE Power Electronics Specialists Conf. Record, 1985, pp. 106116.
    19. 19)
      • 4. Hirota, I., Omori, H., Nakaoka, M.: ‘Performance evaluations of single-ended quasi-load resonant inverter incorporating advanced-2nd generation IGBT for soft switching’. IEEE Int. Conf. on Power Electronics and Motion Control, San Diego CA, 1992, vol. 1, pp. 223228.
    20. 20)
    21. 21)
    22. 22)
    23. 23)
      • 14. Meng, L., Cheng, K.W.E., Chan, K.W.: ‘Systematic approach to high-power and energy-efficient industrial induction cooker system: circuit design, control strategy, and prototype evaluation, power’, IEEE Trans. Electron., 2011, 26, (12), pp. 37543765.
    24. 24)
      • 7. Salih, A.: ‘IGBT for high performance induction heating applications’. Annual Conf. on IEEE Industrial Electronics Society (IECON), Montreal, October 2012, pp. 32743280.
    25. 25)
    26. 26)
    27. 27)
      • 31. Sheikhian, I., Kaminski, N., Voss, S., Scholz, W., Herweg, E.: ‘Optimisation of quasi-resonant induction cookers’. Conf. EPE, Lille France, 2013.
    28. 28)
      • 21. Chang, H.R., Baliga, B.J., Kretchmer, J.W., Piacente, P.A.: ‘Insulated gate bipolar transistor (IGBT) with a trench gate structure’. Int. Conf. Electron Devices Meeting, 1987, pp. 674677.
    29. 29)
      • 10. Liu, K.H., Lee, F.C.: ‘Resonant switches – A unified approach to improve performances of switching converters’. IEEE INTELEC Conf. Record, New Orleans, 1984, pp. 344351.
    30. 30)
      • 18. Cerezo, J.: ‘IGBT Definition for single ended induction heating cookers’ (Bodo's Power Systems, 2012), pp. 2230.
    31. 31)
      • 13. Llorente, S., Monterde, F., Burdio, J.M., Acero, J.: ‘A comparative study of resonant inverter topologies used in induction cookers’. IEEE Applied Power Electronics Conf. and Exposition (APEC), Dallas, 2002, vol. 2, pp. 11681174.
    32. 32)
      • 19. Laska, T., Mauder, A., Lorenz, L.: ‘The field stop IGBT concept with an optimized diode’. Proc. Int. Conf. PCIM, Nürnberg, Germany, 2000.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-cds.2013.0215
Loading

Related content

content/journals/10.1049/iet-cds.2013.0215
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading