Your browser does not support JavaScript!
http://iet.metastore.ingenta.com
1887

access icon free Novel short-circuit protection technique for DC–DC buck converters

This study presents a novel short-circuit protection technique for DC–DC buck converters. The required short-circuit operating frequency is derived in order to avoid the effect of inherent propagation delay in the controller and power transistors. In this design, the short-circuit switching frequency is approximately 31% of the normal value. Simultaneously, the peak current limit is decreased to about 40% of the normal value to lower the power dissipation when a short-circuit event occurs. Once the fault condition is removed, the converters can automatically return to normal operation smoothly by clamping the soft-start signal using the feedback voltage of the output. A buck converter with the proposed technique has been successfully simulated and verified by a 0.6-μm CDMOS technology. The simulation results show that the power loss is only 17.1% of the constant current limit during the prolonged short-circuit situation, which significantly enhances the reliability of the chip. Furthermore, the converter is able to achieve smooth self-recovery as soon as the fault status is released.

References

    1. 1)
    2. 2)
    3. 3)
    4. 4)
    5. 5)
    6. 6)
    7. 7)
    8. 8)
    9. 9)
    10. 10)
    11. 11)
    12. 12)
    13. 13)
    14. 14)
    15. 15)
    16. 16)
    17. 17)
    18. 18)
    19. 19)
    20. 20)
    21. 21)
    22. 22)
    23. 23)
      • 24. Yousefzadeh, V., Maksimovic, D.: ‘Sensorless optimization of dead times in DC–DC converters with synchronous rectifiers’, IEEE Trans. Power Electron., 2006, 21, (4), pp. 9941002 (doi: 10.1109/TPEL.2006.876850).
    24. 24)
      • 22. Chen, K.-H., Chien, C.-C., Hsu, C.-H., Huang, L.-R.: ‘Optimum power-saving method for power MOSFET width of DC–DC converters’, IET Circuits Devices Syst., 2007, 1, (1), pp. 5762 (doi: 10.1049/iet-cds:20050331).
    25. 25)
      • 16. Kondrath, N., Kazimierczuk, M.K.: ‘Control-to-output transfer function of peak current-mode controlled pulse-width modulated dc–dc buck converter in continuous conduction mode’, IET Power Electron., 2012, 5, (5), pp. 582590 (doi: 10.1049/iet-pel.2011.0282).
    26. 26)
      • 4. Li, S., Zou, X., Chen, X., Gan, Q.: ‘Designing a compact soft-start scheme for voltage-mode DC–DC switching converters’, Microelectron. J., 2010, 41, (7), pp. 430439 (doi: 10.1016/j.mejo.2010.05.001).
    27. 27)
      • 3. Lee, H., Ryu, S.-R.: ‘An efficiency-enhanced DCM buck regulator with improved switching timing of power transistors’, IEEE Trans. Circuits Syst. II, Exp. Briefs, 2010, 57, (3), pp. 238242 (doi: 10.1109/TCSII.2010.2043380).
    28. 28)
      • 7. Ma, F.-F., Chen, W.-Z., Wu, J.-C.: ‘A monolithic current-mode buck converter with advanced control and protection circuits’, IEEE Trans. Power Electron., 2007, 22, (5), pp. 18361846 (doi: 10.1109/TPEL.2007.904237).
    29. 29)
      • 27. Wang, N., O'Donnell, T., Meere, R., Rhen, F.M.F., Roy, S., O'Mathuna, S.C.: ‘Thin-film-integrated power inductor on Si and its performance in an 8-MHz buck converter’, IEEE Trans. Magn., 2008, 44, (11), pp. 40964099 (doi: 10.1109/TMAG.2008.2001584).
    30. 30)
      • 18. http://www.datasheets.maximintegrated.com/en/ds/MAX17126-MAX17126A.pdf, accessed January 2013.
    31. 31)
      • 10. Kondrath, N., Kazimierczuk, M.K.: ‘Control-to-output transfer function of peak current-mode controlled PWM dc–dc boost converter in CCM’, Electron. Lett., 2011, 47, (17), pp. 991993 (doi: 10.1049/el.2011.1011).
    32. 32)
      • 23. Bryant, B., Kazimierczuk, M.K.: ‘Modeling the closed-current loop of PWM boost DC–DC converters operating in CCM with peak current-mode control’, IEEE Trans. Circuits Syst. I, Reg. Pap., 2005, 52, (11), pp. 24042412 (doi: 10.1109/TCSI.2005.853904).
    33. 33)
      • 26. Urgun, S.: ‘Zero-voltage transition–zero-current transition pulsewidth modulation DC–DC buck converter with zero-voltage switching–zero-current switching auxiliary circuit’, IET Power Electron., 2012, 5, (5), pp. 627634 (doi: 10.1049/iet-pel.2011.0304).
    34. 34)
      • 1. Forghani-Zadeh, H.P., Rincon-Mora, G.A.: ‘Fast and reliable top-level simulation strategy for mixed-signal integrated circuits and its application to DC–DC converters’, IET Circuits Devices Syst., 2007, 1, (2), pp. 143150 (doi: 10.1049/iet-cds:20060241).
    35. 35)
      • 21. Nam, H., Kim, I., Ahn, Y., Roh, J.: ‘DC–DC switching converter with positive and negative outputs for active-matrix LCD bias’, IET Circuits Devices Syst., 2010, 4, (2), pp. 138146 (doi: 10.1049/iet-cds.2008.0340).
    36. 36)
      • 12. Kazimierczuk, M.K.: ‘Pulse-width modulated DC-DC power converters’ (John Wiley & Sons, 2008).
    37. 37)
      • 28. Du, M., Lee, H., Liu, J.: ‘A 5-MHz 91% peak-power-efficiency buck regulator with auto-selectable peak- and valley-current control’, IEEE J. Solid-State Circuits, 2011, 46, (8), pp. 19281939 (doi: 10.1109/JSSC.2011.2151470).
    38. 38)
      • 2. Liu, Y.X., Liu, S.B., Li, Y.M., Ye, Q., Lai, X.Q.: ‘Design and implementation of a compact frequency synchronisation control circuit using enable input for DC–DC converter’, IET Power Electron., 2012, 5, (9), pp. 18271833 (doi: 10.1049/iet-pel.2012.0187).
    39. 39)
      • 25. Man, T.Y., Mok, P.K.T., Chan, M.J.: ‘A 0.9-V input discontinuous-conduction-mode boost converter with CMOS-control rectifier’, IEEE J. Solid-State Circuits, 2008, 43, (9), pp. 20362046 (doi: 10.1109/JSSC.2008.2001933).
    40. 40)
      • 13. Kondrath, N., Kazimierczuk, M.K.: ‘Margins of stability of inner-current loop of peak current-mode controlled PWM dc-dc converters’. Proc. IEEE Int. Symp. Circuits Systems, 2009, pp. 19851988.
    41. 41)
      • 20. Yuan, B., Lai, X.: ‘On-chip CMOS current-sensing circuit for DC–DC buck converter’, Electron. Lett., 2009, 45, (2), pp. 102103 (doi: 10.1049/el:20092855).
    42. 42)
      • 5. Lee, C.F., Mok, P.K.T.: ‘A monolithic current-mode CMOS DC–DC converter with on-chip current-sensing technique’, IEEE J. Solid-State Circuits, 2004, 39, (1), pp. 314 (doi: 10.1109/JSSC.2003.820870).
    43. 43)
      • 15. Kondrath, N., Kazimierczuk, M.K.: ‘Audio-susceptibility of the inner-loop of peak current-mode controlled PWM DC–DC buck converter in CCM’. Proc. 38th IEEE IECON, 2012, pp. 250255.
    44. 44)
      • 11. Kondrath, N., Kazimierczuk, M.K.: ‘Comparison of wide- and high-frequency duty-ratio-to-inductor-current transfer functions of DC–DC PWM buck converter in CCM’, IEEE Trans. Ind. Electron., 2012, 59, (1), pp. 641643 (doi: 10.1109/TIE.2011.2134053).
    45. 45)
      • 31. Xinquan, L., Jianping, G., Weixue, Y., Yu, C.: ‘A novel digital soft-start circuit for DC-DC switching regulator’. Proc. Int. Conf. ASIC, 2005, pp. 554558.
    46. 46)
      • 8. Kondrath, N., Kazimierczuk, M.K.: ‘Loop gain and margins of stability of inner-current loop of peak current-mode-controlled PWM dc–dc converters in continuous conduction mode’, IET Power Electron., 2011, 4, (6), pp. 701707 (doi: 10.1049/iet-pel.2010.0254).
    47. 47)
      • 17. Shi, L.F., Chang, Y.J., He, H.S., Nie, H.Y., Zhao, Y.R.: ‘Design of rectifier diode temperature compensation circuit in flyback converter’, IET Circuits Devices Syst., 2012, 6, (4), pp. 246251 (doi: 10.1049/iet-cds.2011.0254).
    48. 48)
      • 6. http://www.ti.com/lit/ds/symlink/tps65161.pdf, accessed January 2013.
    49. 49)
      • 14. Kondrath, N., Kazimierczuk, M.K.: ‘Control-to-output and duty ratio-to-inductor current transfer functions of peak current-mode controlled dc-dc PWM buck converter in CCM’. Proc. IEEE Int. Symp. Circuits Systems, 2010, pp. 27342737.
    50. 50)
      • 9. Kondrath, N., Kazimierczuk, M.K.: ‘Unified model to derive control-to-output transfer function of peak current-mode-controlled pulse-width modulated dc–dc converters in continuous conduction mode’, IET Power Electron., 2012, 5, (9), pp. 17061713 (doi: 10.1049/iet-pel.2012.0147).
    51. 51)
      • 29. Wibben, J., Harjani, R.: ‘A high-efficiency DC–DC converter using 2 nH integrated inductors’, IEEE J. Solid-State Circuits, 2008, 43, (4), pp. 844854 (doi: 10.1109/JSSC.2008.917321).
    52. 52)
      • 30. Bing, Y., Xinquan, L., Qiang, Y., Xinzhang, J.: ‘A novel compact soft-start circuit with internal circuitry for DC-DC converters’. Proc. Int. Conf. ASIC, 2007, pp. 450453.
    53. 53)
      • 19. http://www.ti.com/lit/ds/symlink/tps54521.pdf, accessed January 2013.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-cds.2013.0187
Loading

Related content

content/journals/10.1049/iet-cds.2013.0187
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address