access icon free Analysis of static and dynamic performance of organic inverter circuits based on dual and single gate organic thin film transistors

In this study, electrical behaviour of dual-gate (DG) and single-gate (SG) organic thin film transistors (OTFTs) is investigated using Atlas two-dimensional (2D) numerical device simulation. Compared with the SG, DG organic transistor shows improved performance because of the presence of two channels formed in DG device by charge carrier modulation. Furthermore, this study introduces all-p organic inverter circuits with diode-load and zero-V gs-load logic configurations using SG and DG structures. Static and dynamic behaviour of all-p organic inverter circuits is compared with addressing the effect of both the devices. A maximum voltage gain (AV ) of 16 is obtained in zero-V gs-load logic using DG-OTFT, whereas SG-OTFT configuration produces a maximum AV of about 6.27. Significant improvements in propagation delay of 66% for diode-load and 53% for zero-V gs-load logic using DG-OTFT are obtained as compared with SG-OTFT.

Inspec keywords: logic gates; numerical analysis; logic circuits; organic field effect transistors; thin film transistors

Other keywords: DG-OTFT configuration; dual gate organic thin film transistors; DG device; SG organic transistor; diode-load; dynamic behaviour; electrical behaviour; zero-voltage-load logic; DG organic transistor; propagation delay; static performance analysis; organic inverter circuits; SG-OTFT configuration; charge carrier modulation; dynamic performance analysis; 2D numerical device simulation; static behaviour; single gate organic thin film transistors; all-p organic inverter circuits; Atlas two-dimensional numerical device simulation

Subjects: Logic elements; Logic and switching circuits; Other field effect devices; Other numerical methods; Logic circuits; Other numerical methods

References

    1. 1)
      • 9. Gelinck, G.H., Van Veenendaal, E., Coehoorn, R.: ‘Dual-gate organic thin-film transistors’, Appl. Phys. Lett., 2005, 87, (7), pp. 073508073510 (doi: 10.1063/1.2031933).
    2. 2)
      • 8. Iba, S., Sekitani, T., Kato, Y., et al: ‘Control of threshold voltage of organic field-effect transistors with double gate structures’, Appl. Phys. Lett., 2005, 87, (2), pp. 023509023511 (doi: 10.1063/1.1995958).
    3. 3)
      • 6. Cantatore, E., Geuns, T.C.T., Gelinck, G.H., et al: ‘A 13.56-MHz RFID system based on organic transponders’, IEEE J. Solid-State Circuits, 2007, 42, (1), pp. 8492 (doi: 10.1109/JSSC.2006.886556).
    4. 4)
      • 16. Maddalena, F., Spijkman, M., Brondijk, J.J., et al: ‘Device characteristics of polymer dual-gate field-effect transistors’, Org. Electron., 2008, 9, (5), pp. 839846 (doi: 10.1016/j.orgel.2008.06.004).
    5. 5)
      • 22. Gelinck, G.H., Huitema, H.E.A., Van Veenendaal, E., et al: ‘Flexible active-matrix displays and shift registers based on solution-processed organic transistors’, Nat. Mater., 2004, 3, pp. 106110 (doi: 10.1038/nmat1061).
    6. 6)
      • 13. Brondijk, J.J., Spijkman, M., Torricelli, F., Blom, P.W.M., De Leeuw, D.M.: ‘Charge transport in dual-gate organic field-effect transistors’, Appl. Phys. Lett., 2012, 100, (2), pp. 023308-1023308-4 (doi: 10.1063/1.3677676).
    7. 7)
      • 1. Braga, D., Horowitz, G.: ‘High performance organic field effect transistors’, Adv. Mater., 2009, 21, (14–15), pp. 14731486 (doi: 10.1002/adma.200802733).
    8. 8)
      • 23. Myny, K., Beenhakkers, M.J., Van Aerle, N.A.J.M., et al: ‘Unipolar organic transistor circuits made robust by dual-gate technology’, IEEE J. Solid-State Circuits, 2011, 46, (5), pp. 12231230 (doi: 10.1109/JSSC.2011.2116490).
    9. 9)
      • 12. Ha, T.J., Sonar, P., Singh, S.P., Dodabalapur, A.: ‘Characteristics of high-performance ambipolar organic field-effect transistors based on a diketopyrrolopyrrole-benzothiadiazole copolymer’, IEEE Trans. Electron Devices, 2012, 59, (5), pp. 14941500 (doi: 10.1109/TED.2012.2186613).
    10. 10)
      • 10. Goswami, V., Kumar, B., Kaushik, B.K., Yadav, K.L., Negi, Y.S., Majumder, M.K.: ‘Effect of dielectric thickness on performance of dual gate organic field effect transistors’. Proc. IEEE Int. Conf. Communications, Devices and Intelligent Systems (CODIS 2012), doi: 10.1109/CODIS.2012.6422156, India, December 2012, pp. 141144.
    11. 11)
      • 4. Nausieda, I., Ryu, K.K., He, D.D., Akinwande, A.I., Bulovi, V., Sodini, C.G.: ‘Mixed-signal organic integrated circuits in a fully photolithographic dual threshold voltage technology’, IEEE Trans. Electron Devices, 2011, 58, (3), pp. 865873 (doi: 10.1109/TED.2011.2105489).
    12. 12)
      • 2. Lin, Y.Y., Gundlach, D.J., Nelson, S., Jackson, T.N.: ‘Stacked pentacene layer organic thin film transistors with improved characteristics’, IEEE Electron Device Lett., 1997, 18, (12), pp. 606608 (doi: 10.1109/55.644085).
    13. 13)
      • 11. Tripathi, A.K., Smits, E.C.P., Loth, M., Anthony, J.E., Gelinck, G.H.: ‘Charge transport in solution processable polycrystalline dual-gate organic field effect transistors’, Appl. Phys. Lett., 2011, 98, (20), pp. 202106-1202106-3 (doi: 10.1063/1.3591969).
    14. 14)
      • 21. Sirringhaus, H., Kawase, T., Friend, R.H., et al: ‘High-resolution inkjet printing of all-polymer transistor circuits’, Science, 2000, 290, (5499), pp. 21232126 (doi: 10.1126/science.290.5499.2123).
    15. 15)
      • 5. Heremans, P., Gelinck, G.H., Muller, R., Baeg, K., Kim, D., Noh, Y.: ‘Polymer and organic nonvolatile memory devices’, Chem. Mater., 2011, 23, (3), pp. 341358 (doi: 10.1021/cm102006v).
    16. 16)
      • 3. Mittal, P., Kumar, B., Negi, Y.S., Kaushik, B.K., Singh, R.K.: ‘Channel length variation effect on performance parameters of organic field effect transistors’, Microelectron. J., 2012, 43, (12), pp. 985994 (doi: 10.1016/j.mejo.2012.07.016).
    17. 17)
      • 18. Cui, T., Liang, G.: ‘Dual-gate pentacene organic field-effect transistors based on a nanoassembled SiO2 nanoparticle thin film as the gate dielectric layer’, Appl. Phys. Lett., 2005, 86, (6), pp. 064102-1064102-3 (doi: 10.1063/1.1861126).
    18. 18)
      • 14. Ha, T.J., Sonar, P., Dodabalapur, A.: ‘Charge-carrier velocity distributions in high-mobility polymer dual-gate thin-film transistors’, IEEE Trans. Electron Devices, 2012, 33, (6), pp. 899901 (doi: 10.1109/LED.2012.2190034).
    19. 19)
      • 15. Xu, Y., Darmawan, P., Liu, C., et al: ‘Tunable contact resistance in double-gate organic field-effect transistors’, Org. Electron., 2012, 13, (9), pp. 15831588 (doi: 10.1016/j.orgel.2012.05.008).
    20. 20)
      • 19. Atlas User's manual: process and device simulation software, Silvaco International, Santa Clara, 2010.
    21. 21)
      • 7. Brianda, D., Opreab, A., Courbata, J., Barsanb, N.: ‘Making environmental sensors on plastic foils-Review Article’, Mater. Today, 2011, 14, (9), pp. 416423 (doi: 10.1016/S1369-7021(11)70186-9).
    22. 22)
      • 17. Spijkman, M.J., Myny, K., Smits, E.C.P., Heremans, P., Blom, P.W.M., De Leeuw, D.M.: ‘Dual-gate thin-film transistors, integrated circuits and sensors’, Adv. Mater., 2011, 23, (29), pp. 32313242 (doi: 10.1002/adma.201101493).
    23. 23)
      • 24. Guerin, M., Daami, A., Jacob, S., et al: ‘High-gain fully printed organic complementary circuits on flexible plastic foils’, IEEE Trans. Electron Devices, 2011, 58, (10), pp. 35873593 (doi: 10.1109/TED.2011.2162071).
    24. 24)
      • 20. Klauk, H., Lin, Y.Y., Gundlach, D.J., Jackson, T.N.: ‘Pentacene thin film transistors and inverter circuits’. Int. Electron Devices Meeting (IEDM-97) Tech. Dig., 1997, pp. 539542.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-cds.2013.0044
Loading

Related content

content/journals/10.1049/iet-cds.2013.0044
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading