access icon free Synthesis of multithreshold threshold gates based on negative differential resistance devices

This study presents theoretical analysis and synthesis algorithm for multithreshold threshold gates (MTTGs) built of resonant tunnelling diodes (RTDs). The aim of the synthesis is to find a structure of an MTTG gate and relations between all the RTDs given an arbitrary Boolean function of n variables. The contribution of this study is 3-fold: first the authors formulate a functional model of the MTTG gate in which output is given as the difference of two min functions each taking weighed sums of input signals as arguments. Second, it is shown that any Boolean function can be represented as a min/max composition of hyperplanes (weighed sum of input signals) representing threshold functions. Later a procedure is proposed that transforms min/max composition to a difference of two min functions that corresponds to the MTTG structure. Finally, the authors show that the complexity of the resulting the MTTG gate depends on the number of thresholds k in the threshold decomposition of Boolean function and propose a dedicated threshold decomposition procedure that minimises the resulting number of thresholds. As a result, synthesised MTTG circuit is composed of at most (k + 1)(n + 1) RTD devices and (k + 1)n switching elements.

Inspec keywords: logic gates; resonant tunnelling diodes; minimax techniques; threshold logic

Other keywords: switching element; MTTG gate; RTD; multithreshold threshold gate synthesis; resonant tunnelling diode; synthesis algorithm; threshold decomposition; arbitrary Boolean function; hyperplane; min-max composition; negative differential resistance device

Subjects: Junction and barrier diodes; Optimisation techniques; Logic circuits

References

    1. 1)
      • 8. Maezawa, K., Sugiyama, H., Kishimoto, S., Mizutani, T.: ‘100 ghz operation of a resonant tunneling logic gate MOBILE having a symmetric configuration’. Proc. 2006 Int. Conf. Indium Phosphide and Related Materials Conf., May 2006, pp. 4649.
    2. 2)
      • 2. Avedillo, M.J., Quintana, J.M., Pettenghi, H., Kelly, P., Thompson, C.: ‘Multi-threshold threshold logic circuit design using resonant tunnelling devices’, Electron. Lett., 2003, 39, (21), pp. 15021504 (doi: 10.1049/el:20030989).
    3. 3)
      • 14. Bawiec, M.A., Nikodem, M.: ‘Boolean logic function synthesis for generalised threshold gate circuits’. ACM Proc. 46th Design Automation Conf. (DAC 2009), San Francisco, CA, USA, 26–31 July, 2009, pp. 8386.
    4. 4)
      • 7. Wei, Y., Shen, J.: ‘Novel universal threshold logic gate based on RTD and its application’, Microelectron. J., 2011, 42, (6), pp. 851854 (doi: 10.1016/j.mejo.2011.04.005).
    5. 5)
      • 5. Pettenghi, H., Avedillo, M.J., Quintana, J.M.: ‘Using multithreshold threshold gates in RTD-based logic design: a case study’, Microelectron. J., 2008, 39, (2), pp. 241247 (doi: 10.1016/j.mejo.2007.05.015).
    6. 6)
      • 3. Quintana, J.M., Avedillo, M.J., Pettenghi, H.: ‘RTD-based compact programmable gates’. IEEE Int. Joint Conf. Neural Networks, July 2004, pp. 26372640.
    7. 7)
      • 18. Haring, D.R.: ‘Multi-threshold threshold elements’, IEEE Trans. Electron. Comput., 1966, EC-15, (I), pp. 4565 (doi: 10.1109/PGEC.1966.264375).
    8. 8)
      • 12. Pettenghi, H., Avedillo, M.J., Quintana, J.M.: ‘A CAD tool for the design of RTD programmable gates based on MOBILE’. Proc. Design of Circuits and Integrated Systems Conf. (DCIS04), 2004, pp. 2530.
    9. 9)
      • 13. Paul, D.J., Coonan, B., Redmond, G., et al: ‘Silicon quantum integrated circuits(Future Trends in Microelectronics: the Road Ahead) (Wiley, 1999), pp. 183192.
    10. 10)
      • 6. Zheng, Y., Member, S., Huang, C.: ‘Complete logic functionality of reconfigurable RTD circuit elements’, IEEE Trans. Nanotechnol., 2009, 8, (5), pp. 631642 (doi: 10.1109/TNANO.2009.2016563).
    11. 11)
      • 21. Subirats, J., Jerez, J., Franco, L.: ‘A new decomposition algorithm for threshold synthesis and generalization of boolean functions’, IEEE Trans. Circuits Syst. I, Regul. Pap., 2008, 55, (10), pp. 31883196 (doi: 10.1109/TCSI.2008.923432).
    12. 12)
      • 17. Muroga, S.: ‘Threshold logic and its application’ (John Wiley & Sons, 1971).
    13. 13)
      • 10. Quintana, J., Avedillo, M., Nùǹez, J., Roldan, H.: ‘Operation limits for RTD-based MOBILE circuits’, IEEE Trans. Circuits Syst. I, Regul. Pap., 2009, 56, (2), pp. 350363 (doi: 10.1109/TCSI.2008.925943).
    14. 14)
      • 15. Bawiec, M.A., Nikodem, M.: ‘Generalised threshold gate synthesis based on AND/OR/NOT representation of boolean function’. IEEE Proc. 15th Asia South Pacific Design Automation Conf. (ASP-DAC 2010), Taipei, Taiwan, 18–21 January, 2010, 2010, pp. 861866.
    15. 15)
      • 22. Subirats, J.L., Gmez, I., Jerez, J.M., Franco, L.: ‘Optimal synthesis of boolean functions by threshold functions’. ICANN (1)’06, 2006, pp. 983992.
    16. 16)
      • 11. Choi, S., Jeong, Y., Lee, J., Yang, K.: ‘A novel high-speed multiplexing ic based on resonant tunneling diodes’, IEEE Trans. Nanotech., 2009, 8, (4), pp. 482486 (doi: 10.1109/TNANO.2009.2013462).
    17. 17)
      • 19. Muroga, S.: ‘The principle of majority decision logic elements and the complexity of their circuits’. Int. Conf. Information Processing, June 1959.
    18. 18)
      • 23. Gowda, T., Vrudhula, S., Kulkarni, N., Berezowski, K.: ‘Identification of threshold functions and synthesis of threshold networks’, IEEE Trans. Comput.-Aided Des., 2011, 30, (5), pp. 665677 (doi: 10.1109/TCAD.2010.2100232).
    19. 19)
      • 9. Pettenghi, H., Avedillo, M., Quintana, J.: ‘Improved nanopipelined RTD adder using generalized threshold gates’, IEEE Trans. Nanotechnol., 2011, 10, (1), pp. 155162 (doi: 10.1109/TNANO.2009.2035311).
    20. 20)
      • 1. Akeyoshi, T., Maezawa, K., Mizutani, T.: ‘Weighted sum threshold logic operation of MOBILE (monostable-bistable transition logic element) using resonant-tunneling transistors’, Electron Device Letters, 1993, 14, (10), pp. 475477 (doi: 10.1109/55.244735).
    21. 21)
      • 16. Avedillo, M., Quintana, J., Pettenghi, H.: ‘Logic models supporting the design of MOBILE-based RTD circuits’. Proc. 2005 IEEE Int. Conf. Application-Specific Systems, Architecture Processors (ASAP'05), 2005, pp. 254259.
    22. 22)
      • 4. Berezowski, K.: ‘Compact binary logic circuits design using negative differential resistance devices’, Electron. Lett., 2006, 42, (16), pp. 902903 (doi: 10.1049/el:20061288).
    23. 23)
      • 20. Ghosh, S., Basu, D., Choudhury, A.: ‘Multigate synthesis of general boolean functions by threshold logic elements’, IEEE Trans. Comput., 1969, C-18, (5), pp. 451456 (doi: 10.1109/T-C.1969.222684).
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-cds.2012.0368
Loading

Related content

content/journals/10.1049/iet-cds.2012.0368
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading