access icon free High-accuracy thermoelectrical module model for energy-harvesting systems

This study proposes a new SPICE model for thermoelectrical modules (TEMs) that takes into account the internal parameters variation with temperature. Prior work considers constant values for the three factors that determine the figure of merit: Z = ((σS 2)/k), that is the electrical conductivity, the Seebeck coefficient and the thermal conductivity. This leads to large errors in simulation because the parameters vary strongly with temperature. The new model also employs the parasitic elements that appear in a TEM and not discussed in prior works. The proposed model uses experimental data from several TEMs of different manufacturers. The thermoelectrical model of the entire system will be afterwards validated through experiment. A thermoelectric energy-harvesting system is proposed and simulated based on the improved TEMs model. The results show that our model can be used for more accurate simulations when designing TEM-based applications.

Inspec keywords: thermal conductivity; energy harvesting; thermoelectric devices; Seebeck effect; electrical conductivity; SPICE

Other keywords: improved TEM model; parameter variation; electrical conductivity; high-accuracy thermoelectrical module model; SPICE model; thermal conductivity; parasitic element; Seebeck coefficient; thermoelectric energy harvesting system

Subjects: Thermoelectric conversion; Energy harvesting; Energy harvesting; Electronic engineering computing; Other direct energy conversion

References

    1. 1)
      • 8. Chen, M., Rosendahl, L.A., Condra, T.J., Pedersen, J.K.: ‘Numerical modeling of thermoelectric generators with varing material properties in a circuit simulator’, IEEE Trans. Energy Convers., 2009, 24, (1), pp. 112124 (doi: 10.1109/TEC.2008.2005310).
    2. 2)
      • 22. Hensen, J., Nakhi, A.: ‘Fourier and Biot numbers and the accuracy of conduction modelling’. Proc. Bep 94 Conf. ‘Facing the Future’, 1994, pp. 247256.
    3. 3)
      • 14. Laprade, A, Pearson, S, Benczkowski, S, Dolny, G, Wheatley, F: ‘A new PSPICE electro-thermal subcircuit for power MOSFETs’, Fairchild Semiconductor Application Note 7534, July 2004.
    4. 4)
      • 12. Popa, B.: ‘The thermotechnician engineer handbook’ (Technical Publishing, Romanian, 1986).
    5. 5)
      • 16. Gorbachuk, N.P., Bolgar, A.S., Sidorko, V.R., Goncharuk, L.V.: ‘Heat capacity and enthalpy of Bi2Si3 and Bi2Te3 in the temperature range 58–1012 K’, Powder Metall. Met. Ceram., 2004, 43, (5–6), pp. 284290 (doi: 10.1023/B:PMMC.0000042464.28118.a3).
    6. 6)
      • 11. Melcor, Application Notes for Thermoelectric Devices’, former www.melcor.com, acquired by Laird Technologies, www.lairdtech.com, accessed October 2012.
    7. 7)
      • 7. Cernaianu, M., Cernaianu, A., Cirstea, C., Gontean, A.: ‘Thermo electrical generator improved model’. Int. Conf. Power and Energy Systems – ICPES, Hong Kong, April 2012, pp. 343348.
    8. 8)
      • 23. Wang, T.Y., Chen, C.: ‘SPICE-compatible thermal simulation with lumped circuit modeling for thermal reliability analysis based on modeling order reduction’. IEEE Proc. Fifth Int. Symp. on Quality Electronic Design., 2004.
    9. 9)
      • 4. Lineykin, S., Ben-Yaakov, S.: ‘Modeling and analysis of thermoelectric modules’, IEEE Trans. Ind. Appl., 2007, 43, (2), pp. 505512 (doi: 10.1109/TIA.2006.889813).
    10. 10)
      • 20. Zorbas, K.T., Hatzikraniotis, E., Paraskevopoulos, K.M.: ‘Power and efficiency calculation in commercial TEG and application in wasted heat recovery in automobile’. Fifth European Conf. on Thermoelectrics, Odessa, Ukraine, 2007, vol. i, no. (3), pp. 292298.
    11. 11)
      • 6. Alaoui, C.: ‘Peltier thermoelectric modules modeling and evaluation’, Int. J. Eng., 2011, 5, (1), pp. 114121.
    12. 12)
      • 1. McCoy, J.: ‘Thermoelectric technology: materials, processes, devices and systems’, ASM San Diego Chapter, January 2012, available at www.hi-z.com, accessed November 2012.
    13. 13)
      • 24. ‘LTC3105 Step-up DC-DC Converter Datasheet’, available at http://www.linear.com, accessed November 2012.
    14. 14)
      • 9. Chen, M., Rosendahl, L.A., Bach, I., et al: ‘Transient behavior study of thermoelectric generators through an electro-thermal model using SPICE’. 25th Int. Conf. on Thermoelectronics, ICT, 2006, pp. 214219.
    15. 15)
      • 21. Bica, M., Nagi, M., Cernaianu, C.D., Bara, N.: ‘Heat transfer’ (Universitaria Publishing, Craiova, Romania, Romanian, 2009).
    16. 16)
      • 26. Intusoft Newsletter: ‘Personal computer circuit & system design tools’, Issue 78, Nov. 2005.
    17. 17)
      • 13. ‘ThermaCAM E2 Datasheet’, available at www.flirthermography.com/E2data, accessed November 2011.
    18. 18)
      • 5. Yang, M.W., Xu, W.H., Tang, W.Y.: ‘Thermal analysis of laser diode module by an equivalent electrical network method’, Optoelectron. Lett., 2006, 2, (4), pp. 273277 (doi: 10.1007/BF03033658).
    19. 19)
      • 15. Cernaianu, , M., , Gontean, , A.: ‘Parasitic elements modelling in thermoelectric modules’, unpublished.
    20. 20)
      • 25. Abu-Sharkh, S., Doerffel, D.: ‘Rapid test and non-linear model characterisation of solid-state lithium-ion batteries’, J. Power Sources,2004, 130, (2004), pp. 266274 (doi: 10.1016/j.jpowsour.2003.12.001).
    21. 21)
      • 10. ‘Everredtronics LTD. Technical Info’, available at http://www.everredtronics.com, accessed August 2012.
    22. 22)
      • 17. Nenitescu, C.D.: ‘General chemistry’ (Didactic and Pedagogical Publishing, Bucharest, Romanian, 1972).
    23. 23)
      • 18. ‘Elements, Chemical and Chemistry – Molar Mass of Bismuth telluride’, available at www.chemicalaid.com, accessed August 2012.
    24. 24)
      • 3. Mateu, L., Codrea, C., Lucas, N., Pollak, M., Spies, P.: ‘Energy harvesting for wireless communication systems using thermogenerators’. Proc. the XXI Conf. on Design of Circuits and Integrated Systems (DCIS), Barcelona, Spain, 2006.
    25. 25)
      • 19. Raznjevic, K.: ‘Thermodynamic tables and diagrams’ (Technical Publishing, Romanian, 1978).
    26. 26)
      • 2. Mirocha, A., Dziurdzia, P.: ‘Improved electrothermal model of the thermoelectric generator implemented in SPICE’. Int. Conf. Signals And Electronic Systems, ICSES, Krakow, Poland, September, 2008.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-cds.2012.0227
Loading

Related content

content/journals/10.1049/iet-cds.2012.0227
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading