access icon free Effects of imbalance input on linearity of pseudodifferential ladder Gm-C filters

This study presents distortion analysis of the fully differential Gm-C filters in which the imbalance of the differential input voltages is taken into consideration. Closed-form equations expressing distortions of differential-mode (DM) output voltages as functions of DM and common-mode input voltages are developed. It was found that the HD3 of the DM output voltage is independent of the input imbalance. On the contrary, the HD2 of the DM output voltage is directly dependent upon the input imbalance. Simulation results are shown to be in good agreement with the analytical results.

Inspec keywords: ladder filters

Other keywords: common-mode input voltage; differential input voltages imbalance; HD3; fully pseudodifferential ladder Gm-C filter; HD2; closed-form equation; imbalance input effect; distortion analysis; differential-mode output voltage; DM

Subjects: Filters and other networks

References

    1. 1)
      • 3. Cherry, J., Snelgrove, W.M.: ‘On the characterization and reduction of distortion in bandpass filters’, IEEE Trans. Circuits Syst. I, 1998, 45, (5), pp. 523537 (doi: 10.1109/81.668864).
    2. 2)
      • 6. Sotiriadis, P., Celik, A., Loizos, D., Zhang, Z.: ‘Fast state-space harmonic-distortion estimation in weakly nonlinear Gm-C filters’, IEEE Trans. Circuits Syst. I, 2007, 54, (1), pp. 218228 (doi: 10.1109/TCSI.2006.887458).
    3. 3)
      • 7. Palumbo, G, Pennisi, M, Pennisi, S.: ‘Distortion analysis in the frequency domain of a Gm-C biquad’. ECCTD Circuit Theory and Design, Seville, Spain, August 2007, pp. 212215.
    4. 4)
      • 14. Crovetti, P.S.: ‘Finite common-mode rejection in fully differential nonlinear circuits’, IEEE Trans. Circuits Syst. II, 2011, 58, (8), pp. 507511 (doi: 10.1109/TCSII.2011.2158717).
    5. 5)
      • 11. Mavridis, D., Papamichail, M., Kalivas, G., Papadopoulos, G.: ‘Inductive coupling for imbalance improvement in a UWB balun employed in a folded cascade mixer’. Proc. IEEE Int. Conf. Electronics, Circuits, and Systems, Athens, Greece, December 2010, pp. 178181.
    6. 6)
      • 10. Rao, P.Z., Chang, T.Y., Liang, C.P., Chung, S.J.: ‘An ultra-wideband high-linearity CMOS mixer with new wideband active baluns’, IEEE Trans. Microw. Theory Tech., 2009, 57, (9), pp. 21842192 (doi: 10.1109/TMTT.2009.2027079).
    7. 7)
      • 8. Choogorn, T., Mahattanakul, J., Worapishet, A.: ‘Analysis of the common-moCde induced differential-mode distortion in Gm-C filters’. Proc. Int. Symp. Circuits Systems, Paris, France, May 2010, pp. 36213624.
    8. 8)
      • 19. Nauta, B.: ‘A CMOS transconductance-C filter technique for very high frequencies’, IEEE J. Solid-State Circuits, 1992, 27, (2), pp. 142153 (doi: 10.1109/4.127337).
    9. 9)
      • 4. Palaskas, Y., Tsividis, Y.: ‘Dynamic range optimization of weakly nonlinear, fully balanced, Gm-C filters with power dissipation constraints’, IEEE Trans. Circuits Syst. II, 2003, 50, (10), pp. 714727 (doi: 10.1109/TCSII.2003.818365).
    10. 10)
      • 17. Koziel, S., Szczepanski, S., Schaumann, R.: ‘General approach to continuous-time Gm-C filters based on matrix description’. Proc. IEEE Int. Symp. Circuits Syst., Arizona, USA, May 2002, pp. 647650.
    11. 11)
      • 5. Zhang, Z., Celik, A., Sotiriadis, P.: ‘State space harmonic distortion modeling in weakly nonlinear, fully balanced Gm-C filters a modular approach resulting in closed form’, IEEE Trans. Circuits Syst. I, 2006, 53, (1), pp. 4859 (doi: 10.1109/TCSI.2005.854296).
    12. 12)
      • 15. Choogorn, T., Mahattanakul, J.: ‘Relationship between common-mode rejection and differential-mode distortion in fully-differential Gm-C filters’, IET Circuits Dev. Syst., 2011, 5, (12), pp. 518526 (doi: 10.1049/iet-cds.2011.0050).
    13. 13)
      • 18. Koziel, S., Szczepanski, S.: ‘Dynamic range comparison of voltage-mode and current-mode state-space Gm-C biquad filters in reciprocal structures’, IEEE Trans. Circuits Syst. I, 2003, 50, (10), pp. 12451255 (doi: 10.1109/TCSI.2003.817764).
    14. 14)
      • 1. Wambacq, P., Sansen, W.: ‘Distortion analysis of analog integrated circuits’ (Kluwer, Norwell, MA, 1998).
    15. 15)
      • 12. Razavi, B.: ‘Design of analog CMOS integrated circuits’ (McGraw-Hill, 2000).
    16. 16)
      • 9. Blaakmeer, S.C., Klumperink, E.A.M., Leenaerts, D.M.W., Nauta, B.: ‘Wideband balun-LNA with simultaneous output balancing, noise-canceling and distortion-canceling’, IEEE J. Solid-State Circuits, 2008, 43, (6), pp. 13411350 (doi: 10.1109/JSSC.2008.922736).
    17. 17)
      • 20. Khumsat, P., Worapishet, A., Noulkaew, K., Soorapanth, T.: ‘Differential-mode/common-mode feedforward transconductor for low-voltage Gm-C filters’. Proc. IEEE Int. Conf. Electronic, Circuits and Systems, Nice, France, December 2006, pp. 8285.
    18. 18)
      • 13. Johns, D., Martin, K.: ‘Analog integrated circuit design’ (Wiley, New York, 1997).
    19. 19)
      • 16. Buonomo, A., Schiavo, A.L.: ‘Perturbation analysis of nonlinear distortion in analog integrated circuits’, IEEE Trans. Circuits Syst. I, 2005, 52, (8), pp. 16201631.
    20. 20)
      • 2. Fong, E., Zeman, R.: ‘Analysis of harmonic distortion in single channel MOS integrated circuits’, IEEE J. Solid-State Circuits, 1982, SC-17, (1), pp. 8386 (doi: 10.1109/JSSC.1982.1051692).
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-cds.2012.0217
Loading

Related content

content/journals/10.1049/iet-cds.2012.0217
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading