http://iet.metastore.ingenta.com
1887

Monolithic H-bridge brushless DC vibration motor driver with a highly sensitive Hall sensor in 0.18 μm complementary metal-oxide semiconductor technology

Monolithic H-bridge brushless DC vibration motor driver with a highly sensitive Hall sensor in 0.18 μm complementary metal-oxide semiconductor technology

For access to this article, please select a purchase option:

Buy article PDF
£12.50
(plus tax if applicable)
Buy Knowledge Pack
10 articles for £75.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
IET Circuits, Devices & Systems — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

A monolithic low-voltage H-bridge brushless DC (BLDC) vibration motor driver with an integrated high sensitivity Hall sensor has been presented in 0.18 μm high-voltage complementary metal-oxide semiconductor technology. To improve the motor start-up reliability, a full-on start mode is applied to realise a high-speed start sequence by shortening the start-up time. Meanwhile, an active start function is activated to prevent dead point phenomenon if the motor magnet pole sensed by the built-in Hall sensor does not change during the motor starting. This complete one-chip solution for driving the BLDC vibration motors provides significantly enhanced reliabilities, including thermal shutdown and under voltage lockout protection functions, and fully eliminates the need for any external components. The measured results show that the motor driver chip has a typical operating point of 2 mT and a typical releasing point of − 2 mT, showing a hysteresis magnetic property of 4 mT. The chip is very robust. It can operate well within a low supply voltage range of 2–4 V and can output a maximum of 300 mA peak current while the ambient temperature ranges from − 40 to 85°C.

References

    1. 1)
      • C.L. Xia , Z.Q. Li , T.N. Shi .
        1. Xia, C.L., Li, Z.Q., Shi, T.N.: ‘A control strategy for four-switch three-phase brushless DC motor using single current sensor’, IEEE Trans. Ind. Electron., 2009, 56, pp. 20582066 (doi: 10.1109/TIE.2009.2014307).
        . IEEE Trans. Ind. Electron. , 2058 - 2066
    2. 2)
      • F. Rodriguez , A. Emadi .
        2. Rodriguez, F., Emadi, A.: ‘A novel digital control technique for brushless DC motor drives’, IEEE Trans. Ind. Electron., 2007, 54, pp. 23652373 (doi: 10.1109/TIE.2007.900312).
        . IEEE Trans. Ind. Electron. , 2365 - 2373
    3. 3)
      • C.L. Chiu , Y.T. Chen , Y.L. Liang , R.H. Liang .
        3. Chiu, C.L., Chen, Y.T., Liang, Y.L., Liang, R.H.: ‘Optimal driving efficiency design for the single-phase brushless DC fan motor’, IEEE Trans. Magn., 2010, 46, pp. 11231130 (doi: 10.1109/TMAG.2009.2035051).
        . IEEE Trans. Magn. , 1123 - 1130
    4. 4)
      • P. Alaeinovin , J. Jatskevich .
        4. Alaeinovin, P., Jatskevich, J.: ‘Hall-sensor signals filtering for improved operation of brushless DC motors’. IEEE Int. Symp. on Industrial Electronics, June 2011, pp. 2730.
        . IEEE Int. Symp. on Industrial Electronics , 27 - 30
    5. 5)
      • S.R. Gian .
        5. Gian, S.R.: ‘Monolithic integrated Hall devices in silicon circuits’, Microelectron. J., 1981, 12, pp. 2429 (doi: 10.1016/S0026-2692(81)80360-6).
        . Microelectron. J. , 24 - 29
    6. 6)
      • Y. Kanda , M. Migitaka , H. Yamamoto , H. Morozumi , T. Okabe , S. Okazaki .
        6. Kanda, Y., Migitaka, M., Yamamoto, H., Morozumi, H., Okabe, T., Okazaki, S.: ‘Silicon Hall-effect power IC's for brushless motors’, IEEE Trans. Electron Devices, 1982, 29, pp. 151154 (doi: 10.1109/T-ED.1982.20673).
        . IEEE Trans. Electron Devices , 151 - 154
    7. 7)
      • F. Burger , P.-A. Besse , R.S. Popovic .
        7. Burger, F., Besse, P.-A., Popovic, R.S.: ‘New fully integrated 3-D silicon Hall sensor for precise angular-position measurements’, Sens. Actuators A, 1998, 67, pp. 7276 (doi: 10.1016/S0924-4247(97)01750-0).
        . Sens. Actuators A , 72 - 76
    8. 8)
      • F. Burger , P.-A. Besse , R.S. Popovic .
        8. Burger, F., Besse, P.-A., Popovic, R.S.: ‘New single chip Hall sensors for three phases brushless motor control’, Sens. Actuators A, 2000, 81, pp. 320323 (doi: 10.1016/S0924-4247(99)00101-6).
        . Sens. Actuators A , 320 - 323
    9. 9)
      • S. Bellekom .
        9. Bellekom, S.: ‘CMOS versus bipolar Hall plates regarding offset correction’, Sens. Actuators A, 1999, 76, pp. 178182 (doi: 10.1016/S0924-4247(99)00007-2).
        . Sens. Actuators A , 178 - 182
    10. 10)
      • R.S. Popovic , Z. Randjelovic , D. Manic .
        10. Popovic, R.S., Randjelovic, Z., Manic, D.: ‘Integrated Hall-effect magnetic sensors’, Sens. Actuators A, 2001, 91, pp. 4650 (doi: 10.1016/S0924-4247(01)00478-2).
        . Sens. Actuators A , 46 - 50
    11. 11)
      • Z.B. Randjelovic , M. Kayal , R. Popovic , H. Blanchard .
        11. Randjelovic, Z.B., Kayal, M., Popovic, R., Blanchard, H.: ‘High sensitive Hall magnetic sensor microsystem in CMOS technology’, IEEE J. Solid-State Circuits, 2002, 37, pp. 151158 (doi: 10.1109/4.982421).
        . IEEE J. Solid-State Circuits , 151 - 158
    12. 12)
      • H. Blanchard , F. De. Montmollin , J. Hubin , R.S. Popovic .
        12. Blanchard, H., Montmollin, F. De., Hubin, J., Popovic, R.S.: ‘Highly sensitive Hall sensor in CMOS technology’, Sens. Actuators A, 2000, 82, pp. 144148 (doi: 10.1016/S0924-4247(99)00329-5).
        . Sens. Actuators A , 144 - 148
    13. 13)
      • Y. Xu , H.B. Pan .
        13. Xu, Y., Pan, H.B.: ‘An improved equivalent simulation model for CMOS integrated hall plates’, Sensors, 2011, 11, pp. 62846296 (doi: 10.3390/s110606284).
        . Sensors , 6284 - 6296
    14. 14)
      • J.C. van der Meer , F.R. Riedijk , E. van Kampen , K.A.A. Makinwa , J.H. Huijsing .
        14. van der Meer, J.C., Riedijk, F.R., van Kampen, E., Makinwa, K.A.A., Huijsing, J.H.: ‘A fully integrated CMOS Hall sensor with a 3.65 μT 3σ offset for compass applications’. IEEE Int. Solid-State Circuits Conf., February 2005, pp. 246247.
        . IEEE Int. Solid-State Circuits Conf. , 246 - 247
    15. 15)
      • C.C. Enz , G.C. Temes .
        15. Enz, C.C., Temes, G.C.: ‘Circuit techniques for reducing the effects of op-amp imperfections: autozeroing correlated double sampling, and chopper stabilization’, Proc. IEEE, 1996, 84, pp. 15841614 (doi: 10.1109/5.542410).
        . Proc. IEEE , 1584 - 1614
    16. 16)
      • A. Bilotti , G. Monreal .
        16. Bilotti, A., Monreal, G.: ‘Chopper-stabilized amplifiers with a track-and-hold signal demodulator’, IEEE Trans. Circuits Syst. I, 1999, 46, pp. 490495 (doi: 10.1109/81.754850).
        . IEEE Trans. Circuits Syst. I , 490 - 495
    17. 17)
      • A. Bakker , K. Thiele , J. Huijsing .
        17. Bakker, A., Thiele, K., Huijsing, J.: ‘A CMOS nested-chopper instrumental amplifier with 100-nV offset’, IEEE J. Solid-State Circuits, 2000, 35, pp. 18771883 (doi: 10.1109/4.890300).
        . IEEE J. Solid-State Circuits , 1877 - 1883
    18. 18)
      • A. Bilotti , G. Monreal , R. Vig .
        18. Bilotti, A., Monreal, G., Vig, R.: ‘Monolithic magnetic Hall sensor using dynamic quadrature offset cancellation’, IEEE J. Solid-State Circuits, 1997, 32, pp. 829835 (doi: 10.1109/4.585275).
        . IEEE J. Solid-State Circuits , 829 - 835
    19. 19)
      • Y. Hu , W.R. Yang .
        19. Hu, Y., Yang, W.R.: ‘CMOS Hall sensor using dynamic quadrature offset cancellation’. Proc. 8th Int. Conf. on Solid-State and Integrated Circuit Technology, October 2006, pp. 284286.
        . Proc. 8th Int. Conf. on Solid-State and Integrated Circuit Technology , 284 - 286
    20. 20)
      • C. Ouffoue , V. Frick , C. Kern , L. Hébrard .
        20. Ouffoue, C., Frick, V., Kern, C., Hébrard, L.: ‘New fully differential instrumental chain for Hall sensor signal conditioning integrated in standard 0.35 μm CMOS process’. Proc. Joint IEEE North-East Workshop on Circuits and Systems and TAISA Conf., June 2009, pp. 14.
        . Proc. Joint IEEE North-East Workshop on Circuits and Systems and TAISA Conf. , 1 - 4
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-cds.2012.0167
Loading

Related content

content/journals/10.1049/iet-cds.2012.0167
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address