access icon free Performance characterisation of a microwave transistor for the maximum output power and the required noise

The performance characterisation of a microwave transistor is carried out rigorously based on the linear circuit and noise theories, subject to the maximum output power and the predetermined input termination. For this purpose, the transducer gain G T is maximised analytically with respect to the input termination Z S for the output port matched, provided that Z S meets the noise figure requirement F reqF min remaining within the unconditionally stable working area (USWA). Analysis is made in the z-parameter domain which facilitates a single unique crescent conditional stability configuration to replace the eight different, rather complicated stability configurations in the S-parameter domain. Finally, the compromise relations between the gain, noise figure for the output port matched are obtained with typical design configurations depending on the operation conditions of a selected high technology transistor. Incompatible noise and gain requirements can also be observed in their design configurations. Furthermore the cross-relations among the bias condition (V DS, I DS) and ingredients of the performance {F reqF min, V out = 1, G T ≤ G Tmax} triplets and together with their terminations {Z S, Z L = Z*out(Z S)} can be formed basis for “Performance Data Sheets” of microwave transistors to be employed for the amplifier designs of maximum output power and low noise.

Inspec keywords: circuit noise; low noise amplifiers; optimisation; circuit stability; microwave transistors; S-parameters

Other keywords: circuit noise; microwave transistor; multiobjective design optimisation; amplifier design tool; low noise amplifiers; linear circuit; z-parameter domain; transducer gain; noise figure; crescent conditional stability configuration; S-parameter domain

Subjects: Optimisation techniques; Solid-state microwave circuits and devices; Amplifiers; General circuit analysis and synthesis methods

References

    1. 1)
      • 18. Cengiz, Y., Göksu, H., Güneş, F.: ‘Design of a broadband microwave amplifier using neural performance data sheets and very fast simulated reannealing’. In: Wang, J., et al, (Ed.): ‘Advances in neural networks – ISNN, 2006, Pt3, Proc.’, (Springer-Verlag, Berlin, Heidelberg, vol. 3973), pp. 815820.
    2. 2)
      • 20. Güneş, F., Bilgin, C.: ‘A generalized design procedure for a microwave amplifier: a typical application example’, Progress Electromagn. Res. B, 2008, 10, pp. 119 (doi: 10.2528/PIERB08082103).
    3. 3)
      • 23. Demirel, S.: ‘A generalized procedure for design of microwave amplifiers and its applications’. PhD thesis, Yıldız Technical University, Istanbul, Turkey, 2009.
    4. 4)
      • 9. Collins, R.E.: ‘Foundations for microwave engineering’ (McGraw Hill, New York, 1992, 2nd edn.).
    5. 5)
      • 19. Güneş, F., Demirel, S.: ‘Gain gradients applied to optimization of distributed-parameter matching circuits for a microwave transistor subject to its potential performance’, Int. J RF Microw. CAE, 2008, 18, pp. 99111 (doi: 10.1002/mmce.20254).
    6. 6)
      • 10. Pozar, D.M.: ‘Microwave engineering’ (Wiley, New York, 2004, 2nd edn.).
    7. 7)
      • 17. Güneş, F., Cengiz, Y.: ‘Optimization of a microwave amplifier using neural performance data sheets with genetic algorithms’. Int. Conf. Artificial Neural Networks, (ICANN), Istanbul, 26–29 June 2003.
    8. 8)
      • 5. Woods, D.: ‘Reappraisal of the unconditional stability criteria for active 2-port networks in terms of S-parameters’, IEEE Trans. Circuits Syst., 1976, CAS-23, (2), pp. 7381 (doi: 10.1109/TCS.1976.1084179).
    9. 9)
      • 26. Keskin, A.K.: ‘Design optimization of ultrawide band microstrip amplifier using 3D Sonnet- based SVRM with particle swarm intelligence’. MSc thesis, Yıldız Technical University, Istanbul, Turkey, 2012.
    10. 10)
      • 24. Edwards, M.L., Cheng, S., Sinsky, J.H.: ‘A deterministic approach for designing conditionally stable amplifiers’, IEEE Trans. Microw. Theory Tech., 1995, 43, (1), pp. 15671575 (doi: 10.1109/22.392916).
    11. 11)
      • 7. Gonzalez, G.: ‘Microwave transistor amplifiers’ (Prentice-Hall, Englewood Cliffs, NJ, 1984).
    12. 12)
      • 2. Rothe, H., Dahlke, W.: ‘Theory of noisy four poles’. Proc. IRE, 1956, vol. 44, pp. 811818.
    13. 13)
      • 8. Vendelin, G.D., Pavio, A.M., Rohde, U.L.: ‘Microwave circuit design using linear and nonlinear techniques’ (Wiley, New York, 2005).
    14. 14)
      • 25. Güneş, F., Tokan, N.T., Gürgen, F.: ‘A knowledge-based support vector synthesis of the transmission lines for use in microwave integrated circuits’, Expert Syst. Appl., 2010, 37, pp. 33023309 (doi: 10.1016/j.eswa.2009.10.021).
    15. 15)
      • 21. Güneş, F., Demirel, S., Özkaya, U.: ‘A low-noise amplifier design using the performance limitations of a microwave transistor for the ultra-wideband applications’, Int. J RF Microw. CAE, 2010, 20, pp. 535545 (doi: 10.1002/mmce.20459).
    16. 16)
      • 3. Haus, H.A., Atkinson, W.R., Branch, G.M.: ‘Representation of noise in linear two ports’, Proc. IRE, 1960, 48, (1), pp. 6974 (doi: 10.1109/JRPROC.1960.287381).
    17. 17)
      • 12. Güneş, F., Güneş, M., Fidan, M.: ‘Performance characterisation of a microwave transistor’, IEE Proc. Circuits Devices Syst., 1994, 141, pp. 337344 (doi: 10.1049/ip-cds:19941110).
    18. 18)
      • 1. Razavi, B.: ‘RF microelectronics’ (Prentice Hall, Upper Saddle River, NJ, 1998).
    19. 19)
      • 13. Güneş, F., Çetiner, B.A.: ‘A novel Smith chart formulation of performance characterisation for a microwave transistor’, IEE Proc. Circuits Devices Syst., 1998, 145, pp. 419428 (doi: 10.1049/ip-cds:19982389).
    20. 20)
      • 14. Güneş, F., Torpi, H., Gürgen, F.: ‘A multidimensional signal-noise neural network model for microwave transistors’, IEE Proc. Circuits Devices Syst., 1998, 145, (2), pp. 111117 (doi: 10.1049/ip-cds:19981712).
    21. 21)
      • 11. Björn, A.M.: ‘A graphic design method for matched low-noise amplifiers’, IEEE Trans. Microw. Theory Tech., 1990, 38, pp. 118122 (doi: 10.1109/22.46419).
    22. 22)
      • 16. Güneş, F., Tepe, C.: ‘Gain-bandwidth limitations for a microwave transistor’, Int. J. RF Microw. CAE, 2002, 12, (6), pp. 483495 (doi: 10.1002/mmce.10049).
    23. 23)
      • 15. Güneş, F., Türker, N., Gürgen, F.: ‘Signal-noise support vector model of a microwave transistor’, Int. J. RF Microw. CAE, 2007, 17, (4), pp. 404415 (doi: 10.1002/mmce.20239).
    24. 24)
      • 6. Edwards, L.M., Sinsky, H.J.: ‘A new criterion for linear 2-port stability using single geometrically derived parameter’, IEEE Trans., 1992, MTT-40, (12), pp. 23032311.
    25. 25)
      • 4. Fukui, H.: ‘Available power gain, noise figure, and noise measure of two-ports and their graphical representation’, IEEE Trans. Circuit Theory, 1966, CT-13, (2), pp. 137142.
    26. 26)
      • 22. Cengiz, Y., Kılıç, U.: ‘Memetic optimization algorithm applied to design microwave amplifier for the specific gain value constrained by the minimum noise over the available bandwidth’, Int. J RF Microw. CAE, 2010, 20, pp. 546556 (doi: 10.1002/mmce.20460).
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-cds.2012.0119
Loading

Related content

content/journals/10.1049/iet-cds.2012.0119
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading