Your browser does not support JavaScript!
http://iet.metastore.ingenta.com
1887

Optimised design of an organic thin-film transistor amplifier using the gm/ID methodology

Optimised design of an organic thin-film transistor amplifier using the gm/ID methodology

For access to this article, please select a purchase option:

Buy article PDF
£12.50
(plus tax if applicable)
Buy Knowledge Pack
10 articles for £75.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
IET Circuits, Devices & Systems — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

Most of the applications of circuits that are currently in existence use mainly digital circuits. However, interfacing with the external world is a task that can be only accomplished by analog circuits. Thus, to obtain a functional system, some attention must be paid to them, especially when using organic thin-film transistors. In this case, some new issues arise that are very different from those in the digital world. Analog circuits pose a special problem to analog designers. Owing to their low mobilities, they present very low gains, and biasing them in the right point becomes a critical point. Another critical aspect is the high parameter dispersion, which makes analog designs quite complex. In this study, we will try to present a similar strategy, adapted to the specific case of organic TFTs.

References

    1. 1)
      • A. Stoorvogel . (1992) The .
    2. 2)
      • H. Marien , M. Steyaert , E. van Veenendaal , P. Heremans . Analog techniques for reliable organic circuit design on foil applied to an 18 dB single-stage differential amplifier. Org. Electron. , 1357 - 1362
    3. 3)
      • F. Silveira , D. Flandre , P.G.A. Jespers . A gm/ID based methodology for the design of CMOS analog circuits and its application to the synthesis of a silicon-on-insulator micropower OTA. IEEE J Solid-State Circuits , 1314 - 1319
    4. 4)
      • Rotzoll, R., Mohapatra, S., Olariu, V.: `13.56 MHz organic transistor based rectifier circuits for RFID tags', Mater. Res. Soc. Symp. Proc., 2005.
    5. 5)
      • E.A. Vittoz , Franca , Tsividis . (1994) Micropower techniques.
    6. 6)
      • R. Rotzoll , S. Monapatra , V. Olariu . Radio frequency rectifiers based on organic thin-film transistors. Appl. Phys. Lett.
    7. 7)
      • M. Vissenberg , M. Matters . Theory of the field-effect mobility in amorphous organic transistors. Phys Rev B
    8. 8)
      • Q. Wu , J. Zhang , Q. Qiu . Design considerations for digital Circuits using organic thin film transistors on a flexible substrate. Proc. IEEE International Symposium on Circuits and Systems , 1267 - 1270
    9. 9)
      • T. Someya , Y. Kato , T. Sekitani . Conformable, flexible, large-area networks of pressure and thermal sensors with organic transistor active matrixes. Proc. Natl. Acad. Sci. USA
    10. 10)
      • B. Murmann . MOS transistor modeling – Gm/Id-based design.
    11. 11)
      • L. Zhou , A. Wanga , S.C. Wu . All-organic active matrix flexible display. Appl. Phys Lett.
    12. 12)
      • Picos, R., Garcia-Moreno, E.: `Some issues on analog design using OTFTs', 219thECS Meeting, 2011, Montreal.
    13. 13)
      • N. Gay , W.J. Fischer , M. Halik . Analog signal processing with organic FETs. IEEE International Solid-State Circuits Conference.
    14. 14)
      • E. Cantatore , T.C.T. Geuns , G.H. Gelinck . A 13.56-MHz RFID system based on organic transponders. IEEE J. Solid-State Circuits , 84 - 92
    15. 15)
      • G.H. Gelinck , H.E.A. Huitema , E. Van Veenendaal . Flexible active-matrix displays and shift registers based on solution-processed organic transistors. Nat. Mater. , 106 - 110
    16. 16)
      • M. Estrada , A. Cerdeira , J. Puigdollers . Accurate modeling and parameter extraction method for organic TFTs. Solid-State Electron. , 1009 - 1016
    17. 17)
      • M. Estrada , I. Mejia , A. Cerdeira . Mobility model for compact device modeling of OTFTs made with different materials. Solid-State Electron. , 787 - 794
    18. 18)
      • He, D.D.: `An organic thin-film transistor circuit for large-area temperature-sensing', 2008, PhD, Massachusetts Institute of Technology.
    19. 19)
      • Blache, R., Krumm, J., Fix, W.: `Organic CMOS circuits for RFID applications', IEEE Int. Solid-State Circuits Conf. – Digest of Technical Papers, ISSCC 2009, 2009, p. 208–209.
    20. 20)
      • Estrada, M., Cerdeira, A., Pallares, A.C., Marsal, L.F., Iñiguez, B.: `Unified current, mobility and capacitance compact model for polymeric TFTs', ECS Spring Meeting, 2011, Montreal.
    21. 21)
      • Foty, D., Binkley, D., Bucher, M.: `Starting over: gm/Id-based MOSFET modeling as a basis for modernized analog design methodologies', Proc. Nanotech, 2002, p. 682–685, vol. 1.
    22. 22)
      • Binkley, D.M., Verma, N., Crawford, R.L., Brandon, E., Jackson, T.N.: `Design of an auto-zeroed, differential, organic thin-film field-effect transistor amplifier for sensor applications', Society of Photo-Optical Instrumentation Engineers (SPIE) Conf. Series, 2004, p. 41–52, vol. 5522.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-cds.2011.0169
Loading

Related content

content/journals/10.1049/iet-cds.2011.0169
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address