Your browser does not support JavaScript!
http://iet.metastore.ingenta.com
1887

Fault-tolerant A/D converter using analogue voting

Fault-tolerant A/D converter using analogue voting

For access to this article, please select a purchase option:

Buy article PDF
£12.50
(plus tax if applicable)
Buy Knowledge Pack
10 articles for £75.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
IET Circuits, Devices & Systems — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

Analogue and digital circuits are both prone to failure because of device degradations, transient upsets and large parametric variations. Redundancy techniques, such as N-tuple modular redundancy, have been widely used to correct faulty behaviour of components and achieve high reliability for digital circuits. In this study, the authors propose a redundancy based fault-tolerant methodology for analogue circuits. In particular, the authors focus on highly reliable analogue-to-digital converter, which is a critical component in many mixed-signal systems. The authors methodology employs redundant analogue blocks and chooses the best result using an innovative analogue voter. Simulation results are reported to verify the concepts, measure the system's reliability and trade off reliability against cost and power.

References

    1. 1)
      • Vasquez, D., Rueda, A., Huertas, J.: `A practical implementation of fault-tolerant switched-capacitor circuits', IEEE Int, Symp. on Circuits and Syst., June 1991, p. 1565–1568.
    2. 2)
      • Semiconductor Industry Association: The International Technology Roadmap for Semiconductors: 2010 Update, http://www.itrs.net/Links/2010ITRS/2010Update/ToPost/2010-Update-Overview.pdf.
    3. 3)
      • Verbruggen, B., Wambacq, P., Kuijk, M., Vanderplas, G.: `A 7.6 mW 1.75GS/s 5bit Flash A/D converter in 90 nm digital CMOS', IEEE Symp. on VLSI Circuits, March 2008.
    4. 4)
      • Iyer, R., Rosetti, D.: `A statistical load dependency of CPU errors at SLAC', Proc. FTCS-12, 1982, p. 363–372.
    5. 5)
    6. 6)
    7. 7)
      • J. von Neumann , C.E. Shannon , J. McCarthy . (1956) Probabilistic logics and the synthesis of reliable organisms from unreliablecomponents, Automata studies.
    8. 8)
      • D. Dally , A. Chandrakasan . A 6-bit, 0.2 V to 0.9 V highly digital flash ADC with comparator redundancy. IEEE J. Solid-State Circuits , 11 , 3030 - 3038
    9. 9)
    10. 10)
      • Namazi, A., Askari, S., Nourani, M.: `A fault-tolerant mechanism for analog systems', Int. Test Synthesis Workshop (ITSW), March 2008.
    11. 11)
    12. 12)
    13. 13)
      • U. Moon , B. Song . Background digital calibration techniques for pipelined ADCs. IEEE Trans. Circuits Syst. , 102 - 109
    14. 14)
      • (2005) 130 nm and 180 nm Spice models.
    15. 15)
      • Blough, D., Sullivan, G.: `A comparison of voting strategies for fault-tolerant distributed systems', IEEE Symp. on Reliable Distributed Systems, October 1990, p. 136–145.
    16. 16)
    17. 17)
      • User manuals for synopsys tools v2005.06.
    18. 18)
      • Vinnakota, B., Harjani, R.: `The design of analog self-checking circuits', Int. Conf. on VLSI Design, January 1994.
    19. 19)
      • Namazi, A., Askari, S., Nourani, M.: `Highly reliable A/D converter using analog voting', IEEE Int. Conf. on Computer Design (ICCD), May 2008.
    20. 20)
      • J. Han , J. Gao , P. Jonker , Y. Qi , J. Fortes . Toward hardware-redundant, fault-tolerant logic for nanoelectronics. IEEE Des. Test Comput. , 4 , 328 - 339
    21. 21)
      • T. Sundstrom , A. Alvandpour . A 6-bit 2.5-GS/s flash ADC using comparator redundancy for low power in 90 nm CMOS. Analog Integr. Signal Process. , 215 - 222
    22. 22)
      • Koren, I., Chapman, G., Koren, Z.: `A self-correcting active pixel camera', IEEE Int. Symp. on Defect and Fault Tolerance in VLSI Systems, October 2000, p. 56–64.
    23. 23)
    24. 24)
      • W. Yang , D. Kelly , I. Mehr , M. Sayuk , L. Singer . A 3-V 340-mW 14-b 75-Msamples/s CMOS ADC with 85-dB SFDR at Nyquist rate. IEEE J. Solid-State Circuits , 12 , 1931 - 1936
    25. 25)
    26. 26)
    27. 27)
      • Schuler, E., de Souza, A., Junior, A., Carro, L.: `Spare parts in analog circuits: a filter example', IEEE Int. Symp. on Defect and Fault Tolerance in VLSI Systems (DFT'07), September 2007, p. 321–330.
    28. 28)
      • R. Boylestad , L. Nashlesky . (2003) Electronic devices and circuit theory.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-cds.2011.0042
Loading

Related content

content/journals/10.1049/iet-cds.2011.0042
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address