http://iet.metastore.ingenta.com
1887

Performance study of fractional order integrator using single-component fractional order element

Performance study of fractional order integrator using single-component fractional order element

For access to this article, please select a purchase option:

Buy article PDF
£12.50
(plus tax if applicable)
Buy Knowledge Pack
10 articles for £75.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
IET Circuits, Devices & Systems — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

A single-component fractional order element (FOE) is realised and its performance is compared with the conventional FOEs such as cross resistance-capacitance (RC) ladder network and domino ladder network in the analogue domain. The single-component FOE is a capacitive-type probe coated with a porous film of poly-methyl-methacrylate (PMMA) and is dipped in polarisable medium. The fractional exponent of the fabricated single-component FOE and domino ladder can be varied between 0 and 1 whereas that of cross RC ladder realised in this work is 1/2. The performance of fractional order integrator (FOI) using these FOEs is studied in both frequency and time domain by simulation and experimentation. A comparative analysis of the performance of FOI is carried out.

References

    1. 1)
    2. 2)
      • J.A.T. Machado , I.S. Jesus . Suggestion from the past?. FCAA J. Fract. Calc. Appl. Anal. , 4 , 403 - 407
    3. 3)
    4. 4)
    5. 5)
      • J.R. McDonald . (1987) Impedance spectroscopy: emphasizing solid materials and systems.
    6. 6)
    7. 7)
    8. 8)
      • J. Sabatier , O.P. Agrawal , J.A.T. Machado . (2007) Advances in fractional calculus.
    9. 9)
    10. 10)
      • I. Podlubny , I. Petras , B.M. Vinagre , P. O'Leary , L. Dorcak . Analogue realization of fractional-order controllers. Nonlinear Dyn. Int. J. Nonlinear Dyn. Chaos Eng. Syst. , 281 - 296
    11. 11)
    12. 12)
    13. 13)
      • S. Manabe . The non-integer integral and its application to control systems. J. JIEE (Jpn. Inst. Electr. Eng.) , 860 , 589 - 597
    14. 14)
      • S. Manabe . The non-integer integral and its application to control systems. ETJ Jpn. , 83 - 87
    15. 15)
      • Axtell, M., Bise, M.E.: `Fractional calculus applications in control systems', Proc. IEEE National Aerospace and Electronics Conf., 1990, New York, USA, p. 563–566.
    16. 16)
    17. 17)
      • A. Oustaloup , J. Sabatier , P. Lanusse . From fractal robustness to crone control. Fract. Calc. Appl. Anal. , 1 , 1 - 30
    18. 18)
    19. 19)
      • A. Oustaloup , B. Mathieu , P. Lanusse . The crone control of resonant plants: application to a flexible transmission. Eur. J. Control , 2 , 113 - 121
    20. 20)
    21. 21)
      • Rodríguez-Castaño, A., Ollero, A., Vinagre, B.M., Chen, Y.Q.: `Fractional controller for guidance of autonomous ground vehicles', Proc. Fifth IFAC Int. Symp. on Intelligent Components and Instruments for Control Applications, (SICICA2003), July 2003.
    22. 22)
      • Chen, Y.Q., Xue, D., Dou, H.: `Fractional calculus and biomimetic control', IEEE Int. Conf. on Robotics and Biomimetics, August 2004, p. 901–906.
    23. 23)
    24. 24)
    25. 25)
      • Tseng, C.C.: `Closed-form design of variable fractional order integrator using complex cepstrum', IEEE Int. Symp. on Circuits Syst., 27–30 May 2007, p. 3447–3450.
    26. 26)
    27. 27)
      • Abbisso, S., Caponetto, R., Diamante, O., Fortunat, L., Porto, D.: `Non integer order integration by using neural networks', IEEE Int. Symp. on Circuits and Systems, 2001, p. 688–691.
    28. 28)
      • P. Varshney , M. Gupta , G.S. Visweswaran . New switched capacitor fractional order integrator. J. Act. Passive Electron. Dev. , 187 - 197
    29. 29)
      • Petras, I., Grega, S., Dorcak, L.: `Digital fractional order controllers realized by PIC microprocessor: experimental results', Proc. ICCC’2003 Conf., 26–29 May 2003, High Tatras, Slovak Republic, p. 873–876.
    30. 30)
    31. 31)
      • Bohannan, G.W.: `Application of fractional calculus to polarization dynamics in solid dielectrics materials', 2000, PhD, Montana, State University, Bozeman.
    32. 32)
    33. 33)
    34. 34)
      • G.E. Carlson , C.A. Halijak . Approximation of fractional capacitors (1/s)1/n by a regular newton process. IEEE Trans. Circuits Syst. , 210 - 213
    35. 35)
    36. 36)
    37. 37)
    38. 38)
    39. 39)
    40. 40)
      • Sivaramakrishna, M., Das, S., Biswas, K., Goswami, B.: `Characterization of a fractional order element realized by dipping a capacitive type probe in polarizable medium', Symp. on Fractional Signals and Systems Lisbon 09, November 2009.
    41. 41)
      • Biswas, K.: `Studies on design, development and performance analysis of capacitive type sensors', February 2007, PhD, Indian Institute of Technology Kharagpur, Department of Electrical Engineering, India.
    42. 42)
    43. 43)
    44. 44)
      • E. Barsoukov , J.R. Macdonald . (2005) Impedance spectroscopy: theory, experiment, and application.
    45. 45)
      • S. Das . (2008) Functional fractional calculus for system identification and control.
    46. 46)
      • K.B. Oldham , J. Spanier . (1974) The fractional calculus.
    47. 47)
      • I. Podlubny . (1999) Fractional differential equations.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-cds.2010.0366
Loading

Related content

content/journals/10.1049/iet-cds.2010.0366
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address