Your browser does not support JavaScript!
http://iet.metastore.ingenta.com
1887

Performance study of fractional order integrator using single-component fractional order element

Performance study of fractional order integrator using single-component fractional order element

For access to this article, please select a purchase option:

Buy article PDF
£12.50
(plus tax if applicable)
Buy Knowledge Pack
10 articles for £75.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
IET Circuits, Devices & Systems — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

A single-component fractional order element (FOE) is realised and its performance is compared with the conventional FOEs such as cross resistance-capacitance (RC) ladder network and domino ladder network in the analogue domain. The single-component FOE is a capacitive-type probe coated with a porous film of poly-methyl-methacrylate (PMMA) and is dipped in polarisable medium. The fractional exponent of the fabricated single-component FOE and domino ladder can be varied between 0 and 1 whereas that of cross RC ladder realised in this work is 1/2. The performance of fractional order integrator (FOI) using these FOEs is studied in both frequency and time domain by simulation and experimentation. A comparative analysis of the performance of FOI is carried out.

References

    1. 1)
    2. 2)
      • K.B. Oldham , J. Spanier . (1974) The fractional calculus.
    3. 3)
    4. 4)
    5. 5)
    6. 6)
    7. 7)
    8. 8)
    9. 9)
    10. 10)
      • Chen, Y.Q., Xue, D., Dou, H.: `Fractional calculus and biomimetic control', IEEE Int. Conf. on Robotics and Biomimetics, August 2004, p. 901–906.
    11. 11)
      • E. Barsoukov , J.R. Macdonald . (2005) Impedance spectroscopy: theory, experiment, and application.
    12. 12)
      • A. Oustaloup , J. Sabatier , P. Lanusse . From fractal robustness to crone control. Fract. Calc. Appl. Anal. , 1 , 1 - 30
    13. 13)
      • Abbisso, S., Caponetto, R., Diamante, O., Fortunat, L., Porto, D.: `Non integer order integration by using neural networks', IEEE Int. Symp. on Circuits and Systems, 2001, p. 688–691.
    14. 14)
      • J.A.T. Machado , I.S. Jesus . Suggestion from the past?. FCAA J. Fract. Calc. Appl. Anal. , 4 , 403 - 407
    15. 15)
      • J.R. McDonald . (1987) Impedance spectroscopy: emphasizing solid materials and systems.
    16. 16)
    17. 17)
      • Rodríguez-Castaño, A., Ollero, A., Vinagre, B.M., Chen, Y.Q.: `Fractional controller for guidance of autonomous ground vehicles', Proc. Fifth IFAC Int. Symp. on Intelligent Components and Instruments for Control Applications, (SICICA2003), July 2003.
    18. 18)
    19. 19)
    20. 20)
      • Sivaramakrishna, M., Das, S., Biswas, K., Goswami, B.: `Characterization of a fractional order element realized by dipping a capacitive type probe in polarizable medium', Symp. on Fractional Signals and Systems Lisbon 09, November 2009.
    21. 21)
    22. 22)
    23. 23)
      • J. Sabatier , O.P. Agrawal , J.A.T. Machado . (2007) Advances in fractional calculus.
    24. 24)
    25. 25)
      • A. Oustaloup , B. Mathieu , P. Lanusse . The crone control of resonant plants: application to a flexible transmission. Eur. J. Control , 2 , 113 - 121
    26. 26)
    27. 27)
      • S. Das . (2008) Functional fractional calculus for system identification and control.
    28. 28)
      • P. Varshney , M. Gupta , G.S. Visweswaran . New switched capacitor fractional order integrator. J. Act. Passive Electron. Dev. , 187 - 197
    29. 29)
    30. 30)
    31. 31)
      • S. Manabe . The non-integer integral and its application to control systems. ETJ Jpn. , 83 - 87
    32. 32)
      • Axtell, M., Bise, M.E.: `Fractional calculus applications in control systems', Proc. IEEE National Aerospace and Electronics Conf., 1990, New York, USA, p. 563–566.
    33. 33)
    34. 34)
      • I. Podlubny , I. Petras , B.M. Vinagre , P. O'Leary , L. Dorcak . Analogue realization of fractional-order controllers. Nonlinear Dyn. Int. J. Nonlinear Dyn. Chaos Eng. Syst. , 281 - 296
    35. 35)
      • Petras, I., Grega, S., Dorcak, L.: `Digital fractional order controllers realized by PIC microprocessor: experimental results', Proc. ICCC’2003 Conf., 26–29 May 2003, High Tatras, Slovak Republic, p. 873–876.
    36. 36)
      • Bohannan, G.W.: `Application of fractional calculus to polarization dynamics in solid dielectrics materials', 2000, PhD, Montana, State University, Bozeman.
    37. 37)
      • Biswas, K.: `Studies on design, development and performance analysis of capacitive type sensors', February 2007, PhD, Indian Institute of Technology Kharagpur, Department of Electrical Engineering, India.
    38. 38)
      • Tseng, C.C.: `Closed-form design of variable fractional order integrator using complex cepstrum', IEEE Int. Symp. on Circuits Syst., 27–30 May 2007, p. 3447–3450.
    39. 39)
    40. 40)
      • I. Podlubny . (1999) Fractional differential equations.
    41. 41)
      • G.E. Carlson , C.A. Halijak . Approximation of fractional capacitors (1/s)1/n by a regular newton process. IEEE Trans. Circuits Syst. , 210 - 213
    42. 42)
    43. 43)
    44. 44)
    45. 45)
    46. 46)
      • S. Manabe . The non-integer integral and its application to control systems. J. JIEE (Jpn. Inst. Electr. Eng.) , 860 , 589 - 597
    47. 47)
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-cds.2010.0366
Loading

Related content

content/journals/10.1049/iet-cds.2010.0366
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address