http://iet.metastore.ingenta.com
1887

Field programmable analogue array implementation of fractional step filters

Field programmable analogue array implementation of fractional step filters

For access to this article, please select a purchase option:

Buy article PDF
£12.50
(plus tax if applicable)
Buy Knowledge Pack
10 articles for £75.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
IET Circuits, Devices & Systems — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

In this study, the authors propose the use of field programmable analogue array hardware to implement an approximated fractional step transfer function of order (n+α) where n is an integer and 0 < α < 1. The authors show how these filters can be designed using an integer order transfer function approximation of the fractional order Laplacian operator sα. First and fourth-order low- and high-pass filters with fractional steps from 0.1 to 0.9, that is of order 1.1–1.9 and 4.1–4.9, respectively, are given as examples. MATLAB simulations and experimental results of the filters verify the implementation and operation of the fractional step filters.

References

    1. 1)
      • M. Ortigueira . An introduction to the fractional continuous-time linear systems: the 21st century systems. IEEE Circuits Syst. Mag. , 3 , 19 - 26
    2. 2)
      • K.B. Oldham , J. Spanier . (2006) The fractional calculus: theory and applications of differentiation and integration to arbitrary order.
    3. 3)
    4. 4)
      • T. Haba , G. Loum , J. Zoueu , G. Ablart . Use of a component with fractional impedance in the realization of an analogical regulator of order 1/2. J. Appl. Sci. , 59 - 67
    5. 5)
    6. 6)
      • F. Miguel , M. Lima , J. Machado , M. Crisostomo . Experimental signal analysis of robot impacts in a fractional calculus perspective. J. Adv. Comput. Intell. Intell. Inf.
    7. 7)
      • N.F. Ferreira , F. Duarte , M. Lima , M. Marcos , J.T. Machado . Application of fractional calculus in the dynamical analysis and control of mechanical manipulators. Fractional Calc. Appl. Anal. , 1 , 91 - 113
    8. 8)
    9. 9)
      • P. Varshney , M. Gupta , G. Visweswaran . New switched capacitor fractional order integrator. J. Act. Passive Electron. Devices , 187 - 197
    10. 10)
      • G. Santamaria , J. Valverde , R. Perez-Aloe , B. Vinagre . Microelectronic implementations of fractional-order integrodifferential operators. J. Comput. Nonlinear Dyn.
    11. 11)
    12. 12)
      • W. Ahmad , R. Ei-Khazali , A. Elwakil . Fractional-order wien-bridge oscillator. Electron. Lett. (UK) , 1110 - 1112
    13. 13)
      • B. Maundy , A. Elwakil , S. Gift . On a multivibrator that employs a fractional capacitor. Analog Integr. Circuits Signal Process. , 1 , 99 - 103
    14. 14)
      • A. Radwan , A. Soliman , A. Elwakil . First-order filters generalized to the fractional domain. J. Circuits Syst. Comput. , 1 , 55 - 66
    15. 15)
    16. 16)
      • A. Lahiri , T.K. Rawat . Noise analysis of single stage fractional-order low pass filter using stochastic and fractional calculus. ECTI Trans. Electr. Eng. Electron. Commun. , 2 , 136 - 143
    17. 17)
      • C. Matos , M.D. Ortigueira . Emerging trends in technological innovation’ in Camarinha-Matos, L.M., Pereira, P., Ribeiro, L. (Eds.): ‘Fractional filters: an optimization approach.
    18. 18)
      • Freeborn, T., Maundy, B., Elwakil, A.: `Towards the realization of fractional step filters', IEEE Int. Symp. on Circuits and Systems (ISCAS), May 2010, p. 1037–1040.
    19. 19)
      • R. Schaumann , V. Van Valkenburg . (2001) Design of analog filters.
    20. 20)
      • T. Delyiannis . (1999) Continuous time active filter design.
    21. 21)
      • A.J. Zverev . (1967) Handbook of filter synthesis.
    22. 22)
      • S. Westerlund . Dead matter has memory! [capacitor model]. Phys. Scr. (Sweden) , 174 - 179
    23. 23)
      • S. Westerlund , L. Ekstam . Capacitor theory. IEEE Trans. Dielectr. Electr. Insul. , 5 , 826 - 839
    24. 24)
      • B. Krishna , K. Reddy . Active and passive realization of fractance device of order 1/2. Act. Passive Electron. Compon.
    25. 25)
      • A. Djouambi , A. Charef , A. Besancon . Optimal approximation, simulation and analog realization of the fundamental fractional order transfer function. Int. J. Appl. Math. Comput. Sci. , 4 , 455 - 462
    26. 26)
      • Anadigm: ‘3rd Generation dynamically reconfigurable dpASP’. AN231E04 Datasheet Rev 1.1, 2007.
    27. 27)
      • L.P. Huelsman . (1993) Active and passive analog filter design: an introduction.
    28. 28)
      • J. Friend , C. Harris , D. Hilberman . Star: an active biquadratic filter section. IEEE Trans. Circuits Syst. , 115 - 121
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-cds.2010.0141
Loading

Related content

content/journals/10.1049/iet-cds.2010.0141
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address