Your browser does not support JavaScript!
http://iet.metastore.ingenta.com
1887

Nanoparticles with logic and numeracy: towards ‘computer-on-a-particle’ optoelectronic devices

Nanoparticles with logic and numeracy: towards ‘computer-on-a-particle’ optoelectronic devices

For access to this article, please select a purchase option:

Buy article PDF
£12.50
(plus tax if applicable)
Buy Knowledge Pack
10 articles for £75.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
IET Circuits, Devices & Systems — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

The review focuses on semiconductor nanoparticles and hybrid materials obtained by immobilisation of various molecular species on nanoparticulate semiconductors. These materials constitute unique systems combining collective properties of solids with structural diversity of molecules which show distinctive photoelectrochemical properties. Theoretical models of electronic interactions between molecules and semiconductor surfaces have been presented. Additionally, the review summarises the idea of small particles that can work as electronic devices. These devices are able to sense the environment and communicate with other devices and with the user. The devices are based on surface modified wide-band gap semiconductors and the photoelectrochemical photocurrent switching effect. This effect has created a new platform for novel chemical switches, logic gates and other information processing devices. The mechanism of photocurrent switching is discussed with respect to the type of surface complex-support interaction. Photoelectrochemical properties of multicomponent photoelectrodes based on wide band gap nanocrystaline semiconductors modified with various molecules were investigated. The review presents some examples of hybrid materials working as logic devices, including reconfigurable ones and simple arithmetic systems together with mechanistic problems related to nanoscale information processing.

References

    1. 1)
    2. 2)
    3. 3)
    4. 4)
    5. 5)
      • K. Szaciłowski , W. Macyk , M. Hebda , G. Stochel . Redox-controlled photosensitization of nanocrystalline titanium dioxide. Chem Phys Chem. , 2384 - 2391
    6. 6)
    7. 7)
    8. 8)
    9. 9)
    10. 10)
    11. 11)
    12. 12)
    13. 13)
      • George, D., Jaros, B.: `The HTM learning algorithms', Numenta Inc. report, 2007.
    14. 14)
    15. 15)
    16. 16)
    17. 17)
    18. 18)
    19. 19)
    20. 20)
    21. 21)
    22. 22)
    23. 23)
    24. 24)
    25. 25)
    26. 26)
    27. 27)
    28. 28)
    29. 29)
    30. 30)
    31. 31)
    32. 32)
    33. 33)
    34. 34)
    35. 35)
    36. 36)
    37. 37)
      • E. Roduner . (2006) Nanoscopic materials. Size-dependent phenomena.
    38. 38)
    39. 39)
    40. 40)
    41. 41)
    42. 42)
    43. 43)
    44. 44)
    45. 45)
    46. 46)
    47. 47)
    48. 48)
    49. 49)
    50. 50)
    51. 51)
    52. 52)
    53. 53)
      • N. Sakai , Y. Fujiwara , Y. Takahashi , T. Tatsuma . Plasmon-resonance-based generation of cathodic photocurrent at electrodeposited gold nanoparticles coated with TiO2 films. Chem Phys Chem. , 766 - 769
    54. 54)
    55. 55)
    56. 56)
    57. 57)
    58. 58)
    59. 59)
    60. 60)
    61. 61)
    62. 62)
    63. 63)
    64. 64)
    65. 65)
    66. 66)
    67. 67)
    68. 68)
    69. 69)
    70. 70)
    71. 71)
    72. 72)
    73. 73)
    74. 74)
    75. 75)
    76. 76)
    77. 77)
    78. 78)
      • J. Mech , R. Kowalik , A. Podborska , P. Kwolek , K. Szaciłowski . (2010) Arithmetic device based on multiple Schottky-like junctions.
    79. 79)
      • Hawkins, J., George, D.: `Hierarchical temporal memory. Concepts, theory, and terminology', Numenta Inc. report, 2006.
    80. 80)
    81. 81)
    82. 82)
    83. 83)
    84. 84)
      • B.A. Grzybowski . (2009) Chemistry in motion: reaction–diffusion systems for micro- and nanotechnology.
    85. 85)
    86. 86)
    87. 87)
    88. 88)
      • S.R. Hameroff . (1987) Ultimate computing: biomolecular consciousness and nanotechnology.
    89. 89)
    90. 90)
    91. 91)
    92. 92)
    93. 93)
    94. 94)
    95. 95)
    96. 96)
    97. 97)
    98. 98)
    99. 99)
    100. 100)
    101. 101)
    102. 102)
    103. 103)
    104. 104)
    105. 105)
    106. 106)
    107. 107)
    108. 108)
    109. 109)
    110. 110)
    111. 111)
    112. 112)
    113. 113)
    114. 114)
    115. 115)
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-cds.2010.0068
Loading

Related content

content/journals/10.1049/iet-cds.2010.0068
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address