Analysis of negative differential conductance of single-island single-electron transistors owing to Coulomb oscillations

Access Full Text

Analysis of negative differential conductance of single-island single-electron transistors owing to Coulomb oscillations

For access to this article, please select a purchase option:

Buy article PDF
£12.50
(plus tax if applicable)
Buy Knowledge Pack
10 articles for £75.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
IET Circuits, Devices & Systems — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

Despite many years of effort, the precise origin of negative differential resistance (NDR) shown by some organic layers remains unclear. Tang et al. accounted qualitatively for NDR phenomena by coulomb blockade of single-electron transistors (SETs). From this foundation, a novel method based on analysis of the charge stability diagram of a SET is proposed in this study. The method can be used to systematically analyse negative differential conductance (NDC) characteristic of a SET and some organic layers. With this method, the NDC effect is explained with respect to device parameters, and several NDC cells proposed by others are analysed in detail. The results show that this method can be efficiently used to analyse the NDC effect of SETs and some organic layers.

Inspec keywords: single electron transistors; Coulomb blockade

Other keywords: Coulomb blockade; negative differential conductance; charge stability diagram; single-island single-electron transistors; Coulomb oscillations

Subjects: Quantum interference devices

References

    1. 1)
      • Wasshuber, C.: `About single-electron devices and circuits', 1998, PhD, , Vienna, TU.
    2. 2)
      • C.D. Dimitrakopoulos , P.R.L. Malenfant . Organic thin film transistors for large area electronics. Adv. Mater. , 2 , 99 - 117
    3. 3)
    4. 4)
    5. 5)
      • H. Zhang , P. Mazumder , L. Ding , K. Yang . Performance modeling of resonant tunneling-based random-access memories. IEEE Trans. Nanotechnol. , 4 , 472 - 480
    6. 6)
      • J. Park , A.N. Pasupathy , J.I. Goldsmith . Coulomb blockade and the Kondo effect in single-atom transistors. Nature , 13 , 722 - 725
    7. 7)
      • S. Mahapatra , A.M. Ionescu . A novel single electron SRAM architecture. IEEE Conf. Nanotechnol. , 3 , 287 - 289
    8. 8)
    9. 9)
      • M.C. Shin , S.J. Lee , K.W. Park , E.H. Lee . Geometrically induced multiple Coulomb blockade gaps. Phys. Rev. Lett. , 26 , 5774 - 5777
    10. 10)
    11. 11)
    12. 12)
      • D.L. Klein , R. Roth , A.K.L. Lim , A.P. Alivisatos , P.L. McEuen . A single-electron transistor made from a cadmium selenide nanocrysta. Nature , 6652 , 699 - 701
    13. 13)
    14. 14)
      • J.C. Scott , L.D. Bozano . Nonvolatile memory elements based on organic materials. Adv. Mater. , 11 , 1452 - 1463
    15. 15)
    16. 16)
    17. 17)
      • C. Wasshuber . Computational single-electronics.
    18. 18)
      • H. Kim , K. Seo . Noninverted inverted monostabel-to-bistable transition logic element circuits using three resonant tunneling diodes and their application to a static binary frequency divider. Jpn. J. Appl. Phys. , 4 , 2854 - 2857
    19. 19)
    20. 20)
      • J.G. Simmons , R.R. Verderber . New conduction and reversible memory phenomena in thin insulating films. Proc. R. Soc. Lond. A, Math. Phys. Sci. , 1464 , 77 - 102
    21. 21)
      • G.J. Evans , H. Mizuta . Analysis of negative differential conductance in a two-island Coulomb blockade system by a polytope approximation in phase space. J. Appl. Phys. , 6 , 3124 - 3129
    22. 22)
    23. 23)
      • N. Stutzmann , R.H. Friend , H. Sirringhaus . Self-aligned, vertical-channel, polymer field-effect transistors. Science , 5614 , 1881 - 1885
    24. 24)
      • W. Tang , H. Shi , G. Xu . Memory effect and negative differential resistance by electrode-induced two dimensional single-electron tunneling in molecular an organic electronic devices. Adv. Mater. , 19 , 2307 - 2311
    25. 25)
      • Inokawa, H., Takahashi, Y.: `Experimental and simulation studies of single-electron-transistor-based multiple-valued logic', Proc. 33rd Int. Symp. on Multiple-Valued Logic., 2003, Tokyo, Japan, p. 259–266.
    26. 26)
      • C.P. Heij , D.C. Dixon , P. Hadley , J.E. Mooij . Negative differential resistance due to single-electron switching. Appl. Phys. Lett. , 7 , 1042 - 1044
    27. 27)
    28. 28)
      • Y. Yang , J.Y. Ouyang , L.P. Ma , R.J.H. Tseng , C.W. Chu . Electrical switching and bistability in organic/polymeric thin films and memory devices. Adv. Funct. Mater. , 8 , 1001 - 1014
    29. 29)
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-cds.2009.0247
Loading

Related content

content/journals/10.1049/iet-cds.2009.0247
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading