Concurrent error detection in semi-systolic dual basis multiplier over GF(2m) using self-checking alternating logic

Access Full Text

Concurrent error detection in semi-systolic dual basis multiplier over GF(2m) using self-checking alternating logic

For access to this article, please select a purchase option:

Buy article PDF
£12.50
(plus tax if applicable)
Buy Knowledge Pack
10 articles for £75.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
IET Circuits, Devices & Systems — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

Multiplication is one of the most important finite field arithmetic operations in cryptographic computations. Recently, the attacks of fault-based cryptanalysis have been a critical threat to both symmetrical and asymmetrical cryptosystems. To prevent such kind of attacks, masking faulty signals and outputting only correct ciphers would be a feasible solution, especially suitable for finite field multiplication. Therefore a novel dual basis multiplier in GF(2m) with concurrent error detection capability using self-checking alternating logic is presented. The new self-checking alternating logic dual basis multiplier saves about 67% space complexity as compared with other existing dual basis multiplier with concurrent error detection capability that uses the parity checking method. The proposed dual basis multiplier takes almost as low as one extra clock cycle to achieve concurrent error detection capability. Furthermore, any existing faults in fault model are ensured to be detectable through at least one input in the authors’ proposed scheme.

Inspec keywords: circuit complexity; clocks; multiplying circuits; digital arithmetic; systolic arrays; cryptography; Galois fields; fault diagnosis

Other keywords: semisystolic dual basis multiplier; faulty signal masking; Galois fields; concurrent error detection; finite field multiplication; space complexity; fault-based cryptanalysis; clock cycle; self-checking alternating logic; parity checking; cryptographic computation; asymmetrical cryptosystem; fault model; finite field arithmetic operation

Subjects: Cryptography; Algebra; Data security; Logic circuits; Logic and switching circuits; General circuit analysis and synthesis methods; Algebra; Cryptography theory

References

    1. 1)
    2. 2)
    3. 3)
    4. 4)
    5. 5)
      • Anderson, R.J., Kuhn, M.: `Low cost attack on tamper resistant devices', Proc. Fifth Int. Workshop on Security Protocols, 1997, p. 125–136, (LNCS, 1361).
    6. 6)
    7. 7)
      • Mastrovito, E.D.: `VLSI architectures for multiplication over finite field GF(2', in ‘Applied algebra, algebraic algorithms, and error-correcting codes’. Proc. Sixth Int. Conf., AAECC-6, July 1988, Rome, p. 297–309.
    8. 8)
      • D.A. Reynolds , G. Metze . Fault detection capabilities of alternating logic. IEEE Trans. Comput. , 12 , 1093 - 1098
    9. 9)
      • T.-H. Chen , Y.-P. Lee , L.-G. Chen . Concurrent error detection in array multipliers by BIDO. IEE Proc. Comput. Digital Technol. , 6 , 425 - 430
    10. 10)
      • J.H. Patel , L.Y. Fung . Concurrent error detection in ALU's by recomputing with shifted operands. IEEE Trans. Comput. , 72 , 589 - 595
    11. 11)
    12. 12)
      • C.W. Chiou , C.Y. Lee , A.W. Deng , J.M. Lin . Concurrent error detection in montgomery multiplication over GF(2m). IEICE Trans. Fundam. Electron. Commun. Comput. Sci. , 2 , 566 - 574
    13. 13)
      • J.H. Patel , L.Y. Fung . Concurrent error detection in multiply and divide arrays. IEEE Trans. Comput. , 4 , 417 - 422
    14. 14)
      • M. Diab , A. Poli . New bit-serial systolic multiplier for GF(2m) using irreducible trinomials. Electron. Lett. , 13 , 1183 - 1184
    15. 15)
      • Bark, A., Kinne, C.: `The application of pulse position modulation to digital computers', Proc. National Electronics Conf., September 1953, p. 656–664.
    16. 16)
      • C.Y. Lee , C.W. Chiou . Efficient design of low-complexity bit-parallel systolic hankel multipliers to implement multiplication in normal and dual bases of GF(2m). IEICE Trans. Fundam. Electron. Commun. Comput. Sci. , 11 , 3169 - 3179
    17. 17)
      • C.C. Wang , T.K. Truong , H.M. Shao , L.J. Deutsch , J.K. Omura , I.S. Reed . VLSI architectures for computing multiplications and inverses in GF(2m). IEEE Trans. Comput. , 8 , 709 - 717
    18. 18)
      • H. Fan , Y. Dai . Key function of normal basis multipliers in GF(2n). Electron. Lett. , 23 , 1431 - 1432
    19. 19)
      • Minero, R.H., Anello, A.J., Furey, R.G., Palounek, L.R.: `Checking by pseuduplication', U.S., 3660646, May 1972.
    20. 20)
      • F.J. MacWilliams , N.J.A. Sloane . (1977) The theory of error-correcting codes.
    21. 21)
    22. 22)
      • C.-L. Wey . Concurrent error detection in array dividers by alternating input data. IEE Proc.-E , 2 , 123 - 130
    23. 23)
      • C.C. Wang . An algorithm to design finite field multipliers using a self-dual normal basis. IEEE Trans. Comput. , 10 , 1457 - 1459
    24. 24)
    25. 25)
      • Coron, J.S.: `Resistance against differential power analysis attacks for elliptic curve cryptosystems', Proc. Cryptographic Hardware and Embedded Systems (CHES’99), 1999, p. 292–302, (LNCS, 1717).
    26. 26)
      • S.T.J. Fenn , M. Benaissa , D. Taylor . Dual basis systolic multipliers for GF(2m). IEE Proc. Comput. Digit. Tech. , 1 , 43 - 46
    27. 27)
      • N. Weste , K. Eshraghian . (1985) Principles of CMOS VLSI design: a system perspective.
    28. 28)
    29. 29)
      • Woodard, S.E.: `Design of digital systems using self-checking alternating logic', 1977, PhD, University of Illinois at Urbana-Champaign, USA.
    30. 30)
      • E.R. Berlekamp . Bit-serial reed-solomon encoder. IEEE Trans. Inf. Theory , 869 - 874
    31. 31)
      • C. Paar , P. Fleischmann , P. Roelse . Efficient multiplier architectures for Galois Fields GF(24n). IEEE Trans. Comput. , 2 , 162 - 170
    32. 32)
    33. 33)
    34. 34)
      • Karri, R., Kuznetsov, G., Goessel, M.: `Parity-based concurrent error detection of substitution-permutation network block ciphers', Proc. CHES 2003, 2003, p. 113–124, (LNCS, 2779).
    35. 35)
      • Messerges, T.S., Dabbish, E.A., Sloan, R.H.: `Power analysis attacks of modular exponentiation in smartcards', Proc. Cryptographic Hardware and Embedded Systems (CHES’99), 1999, p. 144–157, (LNCS, 1717).
    36. 36)
    37. 37)
      • M. Joye , A.K. Lenstra , J.-J. Quisquater . Chinese remaindering based cryptosystems in the presence of faults. J. Cryptol. , 241 - 245
    38. 38)
      • Yamamoto, H., Watanabe, T., Urano, Y.: `Alternating logic and its application to fault detection', Proc. 1970 IEEE Int. Computing Group Conf., June 1970, Washington, DC, p. 220–228.
    39. 39)
      • M. Wang , I.F. Blake . Bit serial multiplication in finite fields. SIAM J. Discret. Math. , 1 , 140 - 148
    40. 40)
    41. 41)
      • R.E. Blahut . (1985) Fast algorithms for digital signal processing.
    42. 42)
      • Kelsey, J., Schneier, B., Wagner, D., Hall, C.: `Side-channel cryptanalysis of product ciphers', Proc. ESORICS, September 1998, p. 97–110.
    43. 43)
      • H. Wu , M.A. Hasan . Low complexity bit-parallel multipliers for a class of finite fields. IEEE Trans. Comput. , 8 , 883 - 887
    44. 44)
      • M. Morii , M. Kasahara , D.L. Whiting . Efficient bit-serial multiplication and the discrete-time Wiener-Hopf equation over finite fields. IEEE Trans. Inf. Theory , 6 , 1177 - 1183
    45. 45)
      • Reynolds, D.A., Metze, G.: `Fault detection capabilities of alternating logic', Proc. Sixth Ann. Symp. on Fault Tolerant Computing, June 1976, p. 157–162.
    46. 46)
      • R. Lidl , H. Niederreiter . (1994) Introduction to finite fields and their applications.
    47. 47)
      • C.-Y. Lee , J.-M. Lin , C.W. Chiou . Scalable and systolic architecture for computing double exponentiation over GF(2m). Acta Appl. Math. , 161 - 178
    48. 48)
    49. 49)
      • Biham, E., Shamir, A.: `Differential fault analysis of secret key cryptosystems', Proc. Crypto, 1997, p. 513–525, (LNCS, 1294).
    50. 50)
      • Boneh, D., Demillo, R., Lipton, R.: `On the importance of checking cryptographic protocols for faults', Proc. Eurocrypt, 1997, p. 37–51, (LNCS, 1233).
    51. 51)
    52. 52)
      • Massey, J.L., Omura, J.K.: `Computational method and apparatus for finite field arithmetic', U.S., 4587627, May 1986.
    53. 53)
      • J. Wakerly . (1980) Error detecting codes, self-checking circuits and applications.
    54. 54)
      • Reyhani-Masoleh, A., Hasan, M.A.: `Error detection in polynomial basis multipliers over binary extension fields', Proc. Cryptographic Hardware and Embedded Systems-CHES 2002, 2003, p. 515–528, (LNCS, 2523).
    55. 55)
      • T.C. Bartee , D.J. Schneider . Computation with finite fields. Inform. Comput. , 79 - 98
    56. 56)
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-cds.2009.0243
Loading

Related content

content/journals/10.1049/iet-cds.2009.0243
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading