24-GHz ultra-wideband transmitter for vehicular short-range radar applications

Access Full Text

24-GHz ultra-wideband transmitter for vehicular short-range radar applications

For access to this article, please select a purchase option:

Buy article PDF
£12.50
(plus tax if applicable)
Buy Knowledge Pack
10 articles for £75.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
IET Circuits, Devices & Systems — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

This paper presents a 24-GHz transmitter for ultra-wideband short-range radar applications fabricated in a 0.13-µm SiGe:C BiCMOS technology. The circuit is composed of a frequency synthesiser, based on 24-GHz voltage-controlled oscillator in an N-integer phase-locked loop (PLL), a RF switch delivering a 0-dBm output power, and a tunable rectangular pulse generator, whose pulse width covers a range between 0.5 and 1.2 ns. The transmitter has been developed for a flip-chip bumping assembly on a module with an UWB antenna. Assuming a 10.5-dBi antenna gain, it is compliant with European Telecommunications Standards Institute (ETSI) transmission mask and is able to cover the main automotive applications addressing both a resolution better than 0.1 m and maximum unambiguous range of 15 m.

Inspec keywords: radar applications; phase locked loops; semiconductor materials; pulse generators; flip-chip devices; Ge-Si alloys; BiCMOS integrated circuits; voltage-controlled oscillators; carbon

Other keywords: flip-chip bumping assembly; SiGe:C; N-integer phase-locked loop; ultra wideband transmitter; tunable rectangular pulse generator; frequency 24 GHz; BiCMOS technology; voltage-controlled oscillator; vehicular short-range radar applications; RF switch; frequency synthesiser; size 0.13 mum

Subjects: Modulators, demodulators, discriminators and mixers; Radar equipment, systems and applications; Mixed technology integrated circuits; Power electronics, supply and supervisory circuits; Oscillators; Pulse generators

References

    1. 1)
      • A. Tasić , W.A. Serdijn , J.R. Long . Design of multistandard adaptive voltage-controlled oscillators. IEEE Trans. Microw. Theory Tech. , 556 - 563
    2. 2)
      • K. Lin , Y.E. Wang , C. Pao , Y. Shih . A Ka-band FMCW radar front-end with adaptive leakage cancellation. IEEE Trans. Microw. Theory Tech. , 4041 - 4048
    3. 3)
      • S. Levantino , C. Samori , A. Bonfanti , S.L.J. Gierkink , A.L. Lacaita , V. Boccuzzi . Frequency dependence on bias current in 5-GHz CMOS VCOs: impact on tuning range and flicker noise upconversion. IEEE J. Solid-State Circuits , 1003 - 1011
    4. 4)
      • F. Carrara , A. Italia , E. Ragonese , G. Palmisano . Design methodology for the optimization of transformer-loaded RF circuits. IEEE Trans. Circuits Syst. I: Regul. Pap. , 761 - 768
    5. 5)
      • B. Jung , R. Harjani . High-frequency LC VCO design using capacitive degeneration. IEEE J. Solid-State Circuits , 2359 - 2370
    6. 6)
      • A.Z.H. Wang , F. Haigang , Z. Rouying . A review on RF ESD protection design. IEEE Trans. Electron Devices , 1304 - 1311
    7. 7)
      • I. Gresham , A. Jenkins , R. Egri . Ultra-wideband radar sensors for short-range vehicular applications. IEEE Trans. Microw. Theory Tech. , 2105 - 2121
    8. 8)
      • J. Conan Zhan , J. Duster , K.T. Kornegay . A 25-GHz emitter degenerated LC VCO. IEEE J. Solid-State Circuits , 2062 - 2064
    9. 9)
      • Klotz, M.: `An automotive short-range high resolution pulse radar network', January 2002, PhD, Technical University of Hamburg-Harburg,, Department of Telecommunication,, Hamburg,, Germany, Available at: http://www.smartmicro.de/dissertation_klotz.pdf.
    10. 10)
      • Zhao, P., Veenstra, H., Long, J.R.: `A 24 GHz pulse-mode transmitter for short-range car radar', IEEE Radio Frequency Integrated Circuits Symp. Dig., June 2007, p. 379–382.
    11. 11)
      • T. Biondi , A. Scuderi , E. Ragonese , G. Palmisano . Sub-nH inductor modeling for RF IC design. IEEE Microw. Wirel. Compon. Lett. , 922 - 924
    12. 12)
      • A. Oncu , B.B.M.W. Badalawa , M. Fujishima . 22–29 GHz ultra-wideband CMOS pulse generator for short-range radar applications. IEEE J. Solid-State Circuits , 1464 - 1471
    13. 13)
      • M. Tiebout . A CMOS direct injection-locked oscillator topology as high-frequency low-power frequency divider. IEEE J. Solid-State Circuits , 1170 - 1174
    14. 14)
      • A. Scuderi , G. Palmisano . A low phase-noise voltage-controlled oscillator for 17-GHz applications. IEEE Microw. Wirel. Compon. Lett. , 191 - 193
    15. 15)
      • T. Copani , S.A. Smerzi , G. Girlando , G. Palmisano . A 12-GHz silicon bipolar dual-conversion receiver for digital satellite applications. IEEE J. Solid-State Circuits , 1278 - 1287
    16. 16)
      • FCC: ‘First report and order, revision of part 15 of the commission's rules regarding ultra wideband transmission systems’. FCC, Washington, DC, ET Docket 98 153, 2002.
    17. 17)
      • C. Cao , K.O. Kenneth . Millimeter-wave voltage-controlled oscillators in 0.13-µm CMOS technology. IEEE J. Solid-State Circuits , 1297 - 1304
    18. 18)
      • J. Lee , B. Razavi . A 40-GHz frequency divider in 0.18–µm CMOS technology. IEEE J. Solid-State Circuits , 594 - 601
    19. 19)
      • A. Mazzanti , P. Uggetti , F. Svelto . Analysis and design of injection-locked LC dividers for quadrature generation. IEEE J. Solid-State Circuits , 1425 - 1433
    20. 20)
      • S. Ko , J. Kim , T. Song , E. Yoon , S. Hong . K- and Q-bands CMOS frequency sources with X-band quadrature VCO. IEEE Trans. Microw. Theory Tech. , 2789 - 2800
    21. 21)
      • A.W.L. Ng , G.C.T. Leung , K. Kwok , L.L.K. Leung , H.C. Luong . A 1-V 24-GHz 17.5-mW phase-locked loop in a 0.18-µm CMOS process. IEEE J. Solid-State Circuits , 1236 - 1244
    22. 22)
      • T.M. Hancock , G.M. Rebeiz . Design and analysis of a 70-ps SiGe differential RF switch. IEEE Trans. Microwave Theory Tech. , 2403 - 2410
    23. 23)
      • Scuderi, A., Ragonese, E., Palmisano, G.: `0.13-µm SiGe BiCMOS radio front-end circuits for 24-GHz automotive short-range radar sensors', Proc. IEEE European Solid-State Circuit Conf., September 2008, p. 494–497.
    24. 24)
      • A. Komijani , A. Natarajan , A. Hajimiri . 24-GHz, +14.5-dBm fully integrated power amplifier in 0.18-µm CMOS. IEEE J. Solid-State Circuits , 1901 - 1908
    25. 25)
      • ETSI EN 302 288-1: ‘Electromagnetic compatibility and radio spectrum matters (ERM); short range devices; road transport and traffic telematics (RTTT); short range radar equipment operating in the 24 GHz range; part 1: technical requirements and methods of measurement’.
    26. 26)
      • Gresham, I., Kinayman, N., Jenkins, A.: `A fully integrated 24 GHz SiGe receiver chip in a low-cost QFN plastic package', IEEE Radio Frequency Integrated Circuits Symp. Dig., June 2006, p. 371–374.
    27. 27)
      • Laurens, M., Martinet, B., Kermarrec, O.: `A 150 GHz ', Proc. IEEE Bipolar/BiCMOS Circuits Technology Meeting, October 2003, p. 199–202.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-cds.2009.0055
Loading

Related content

content/journals/10.1049/iet-cds.2009.0055
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading