On-chip thermal optimisation by whitespace reallocation using a constrained particle-swarm optimisation algorithm

Access Full Text

On-chip thermal optimisation by whitespace reallocation using a constrained particle-swarm optimisation algorithm

For access to this article, please select a purchase option:

Buy article PDF
£12.50
(plus tax if applicable)
Buy Knowledge Pack
10 articles for £75.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
IET Circuits, Devices & Systems — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

The density of chip power dissipation has been increasing steadily over the past several years. High operating temperatures and the existence of hotspots are degrading chip performance and undermining chip reliability. Reducing maximum on-chip temperatures is becoming increasingly important as technology scales below 65 nm. Existing thermal floorplanner compact blocks at the lowest leftmost position allowed by the floor plan encoding. Such compaction minimises chip area but is sub-optimal for wire length and thermal objectives. It is possible to move the blocks in the whitespace (unoccupied chip area) to minimise maximum on-chip temperature without affecting the overall chip area and with a minimal wire length increment of ∼2–3%. However, reallocation of whitespace for thermal optimisation has not been addressed by researchers to date. Here, the development of a constrained particle swarm optimisation algorithm to find an optimal solution to the problem has been described. Simulation results on MCNC benchmark circuits indicate that this method can reduce the maximum on-chip temperature of thermal-aware floor plans by 0.58–7.10°C.

Inspec keywords: integrated circuit reliability; integrated circuit design

Other keywords: constrained particle-swarm optimisation; thermal floorplanner; chip reliability; on-chip temperatures; whitespace reallocation; on-chip thermal optimisation; chip power dissipation; thermal-aware floor plans; maximum on-chip temperature

Subjects: Semiconductor integrated circuit design, layout, modelling and testing; Reliability

References

    1. 1)
      • S.N. Adya , I.L. Markov . Fixed-outline floorplanning: enabling hierarchical design. IEEE Trans. Very Large Scale Integr. (VLSI) Syst. , 6 , 1120 - 1135
    2. 2)
      • Prasitjutrakul, S., Kubitz, W.J.: `Path-delay constrained floorplanning: a mathematical programming approach for initial placement', Proc. 26th ACM/IEEE Design Automation Conf., 1989, p. 364–369.
    3. 3)
      • M.N. Ozisik . (1968) Boundary value problems of heat condition.
    4. 4)
      • Lall, B.S., Ortega, A., Kabir, H.: `Thermal design rules for electronic components on conducting boards in passively cooled enclosures', Proc. Intersociety Conf. on Thermal Phenomena in Electronic Systems, 1994, p. 50–61.
    5. 5)
      • Brooks, D., Martonosi, M.: `Dynamic thermal management for high-performance microprocessors', Proc. HPCA Seventh Int. Symp. on High-Performance Computer Architecture, 2001, p. 171–182.
    6. 6)
      • S. Murali , A. Mutapcic , D. Atienza , R. Gupta , S. Boyd , G. De Micheli . Temperature-aware processor frequency assignment for MPSoCs using convex optimization. Int. Conf. on Hardware/Software Codesign and System Synthesis , 111 - 116
    7. 7)
      • Hung, W.L., Xie, Y., Vijaykrishnan, N., Addo-Quaye, C., Theocharides, T., Irwin, M.J.: `Thermal-aware floorplanning using genetic algorithms', Proc. 6th Int. Symp. on Quality Electronic Design, 2005, p. 634–639.
    8. 8)
      • S. Borkar . Design challenges of technology scaling. IEEE Micro , 4 , 23 - 29
    9. 9)
      • H. Murata , K. Fujiyoshi , S. Nakatake , Y. Kajitani . VLSI module placement based on rectangle-packing by the sequence-pair. IEEE Trans. Comput.-Aided Des. Integr. Circuits Syst. , 12 , 1518 - 1524
    10. 10)
      • S. Nakatake , K. Fujiyoshi , H. Murata , Y. Kajitani . Module placement on BSG-structure and IC layout applications. IEEE/ACM Int. Conf. on Computer-Aided Design , 484 - 491
    11. 11)
      • Eberhart, R., Kennedy, J.: `A new optimizer using particle swarm theory', MHS'95, Proc. Sixth Int. Symp. on Micro Machine and Human Science, 1995, p. 39–43.
    12. 12)
      • 2007 International Technology Roadmap for Semiconductors: Process Integration, Devices, and Structureshttp://www.itrs.net/.
    13. 13)
      • Skadron, K., Stan, M.R., Huang, W., Sivakumar, V., Karthik, S., Tarjan, D.: `Temperature-aware microarchitecture', Proc. 30th Annual Int. Symp. on Computer Architecture, 2003, p. 2–13.
    14. 14)
      • K. Sankaranarayanan , S. Velusamy , M.R. Stan , K. Skadron . A case for thermal-aware floorplanning at the microarchitectural level. J. Instr.-Level Parallelism , 1 - 16
    15. 15)
      • S.N. Adya , I.L. Markov , P.G. Villarrubia . On whitespace and stability in mixed-size placement and physical synthesis. ICCAD-2003. Int. Conf. on Computer Aided Design , 311 - 318
    16. 16)
      • S.H. Gunther , F. Binns , D.M. Carmean , J.C. Hall . Managing the impact of increasing microprocessor power consumption. Intel Technol. J. , 1 , 1 - 9
    17. 17)
      • C.L. Valenzuela , P.Y. Wang . VLSI placement and area optimization using a genetic algorithm to breed normalized postfix expressions. IEEE Trans. Evol. Comput. , 4 , 390 - 401
    18. 18)
      • Chatterjee, D., Manikas, T.W.: `Power-density aware floorplanning for reducing maximum on-chip temperature', 18thIASTED Int. Conf. on Modelling and Simulation (ICMS), 2007, p. 319–324.
    19. 19)
      • Kahng, A.B., Tucker, P., Zelikovsky, A.: `Optimization of linear placements for wirelength minimization with free sites', Proc. ASP-DAC '99 Asia and South Pacific Design Automation Conf., 1999, p. 241–244.
    20. 20)
      • Chang, Y.-C., Chang, Y.-W., Wu, G.-M., Wu, S.-W.: `B*-Trees: a new representation for non-slicing floorplans', Proc. 37th Conf. on Design Automation, 2000, p. 458–463.
    21. 21)
      • Guo, P.-N., Cheng, C.-K., Yoshimura, T.: `An O-tree representation of non-slicing floorplan and its applications', Proc. 36th ACM/IEEE Conf. on Design Automation Conf., 1999, p. 268–273.
    22. 22)
      • H. Yongkui , K. Israel . Simulated annealing based temperature aware floorplanning. J. Low Power Electron. , 2 , 141 - 155
    23. 23)
      • X. Tang , R. Tian , M.D.F. Wong . Minimizing wire length in floorplanning. IEEE Trans. Comput.-Aided Des. Integr. Circuits Syst. , 9 , 1744 - 1753
    24. 24)
      • C.J. Alpert , G.-J. Nam , P.G. Villarrubia . Free space management for cut-based placement. IEEE/ACM Int. Conf. on Computer-Aided Design , 746 - 751
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-cds.2009.0049
Loading

Related content

content/journals/10.1049/iet-cds.2009.0049
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading