Your browser does not support JavaScript!
http://iet.metastore.ingenta.com
1887

access icon free Ear recognition in 3D using 2D curvilinear features

This study presents a novel approach for human recognition using co-registered three-dimensional (3D) and 2D ear images. The proposed technique is based on local feature detection and description. The authors detect feature key-points in 2D ear images utilising curvilinear structure and map them to the 3D ear images. Considering a neighbourhood around each mapped key-point in 3D, a feature descriptor vector is computed. To match a probe 3D ear image with a gallery 3D ear image for recognition, first highly similar feature key-points of these images are used as correspondence points for an initial alignment. Afterwards, a fine iterative closest point matching is performed on entire data of the 3D ear images being matched. An extensive experimental analysis is performed to demonstrate the recognition performance of the proposed approach in the presence of noise and occlusions, and compared with the available state-of-the-art 3D ear recognition techniques. The recognition rate of the proposed technique is found to be 98.69% on the University of Notre Dame-Collection J2 dataset with an equal error rate of 1.53%.

References

    1. 1)
      • 38. Panagiotakis, C., Kokinou, E., Sarris, A.: ‘Curvilinear structure enhancement and detection in geophysical images’, IEEE Trans. Geosci. Remote Sens., 2011, 49, (6), pp. 20402048.
    2. 2)
      • 21. Zhang, Y., Mu, Z., Yuan, L., et al: ‘3D ear normalization and recognition based on local surface variation’, Appl. Sci., 2017, 7, (1), p. 104.
    3. 3)
      • 15. Passalis, G., Kakadiaris, I.A., Theoharis, T., et al: ‘Towards fast 3D ear recognition for real-life biometric applications’. Proc. IEEE Conf. Advanced Video and Signal based Surveillance, 2007, pp. 3944.
    4. 4)
      • 32. Cadavid, S., Abdel Mottaleb, M.: ‘3D ear modeling and recognition from video sequences using shape from shading’, IEEE Trans. Inf. Forensics Sec., 2008, 3, (4), pp. 709718.
    5. 5)
      • 4. Prakash, S., Gupta, P.: ‘Ear biometrics in 2D and 3D: localization and recognition’ (Springer, Singapore, 2015, 1st edn.).
    6. 6)
      • 7. Bustard, J.D., Nixon, M.S.: ‘Toward unconstrained ear recognition from two-dimensional images’, IEEE Trans. Syst. Man Cybern. A, Syst. Hum., 2010, 40, (3), pp. 486494.
    7. 7)
      • 26. Chen, H., Bhanu, B.: ‘Efficient recognition of highly similar 3D objects in range images’, IEEE Trans. Pattern Anal. Mach. Intell., 2009, 31, (1), pp. 172179.
    8. 8)
      • 31. Zeng, H., Dong, J.Y., Mu, Z.C., et al: ‘Ear recognition based on 3D keypoint matching’. Proc. IEEE Int. Conf. Signal Processing, 2010, pp. 16941697.
    9. 9)
      • 10. Dodge, S., Mounsef, J., Karam, L.: ‘Unconstrained ear recognition using deep neural networks’, IET Biometrics, 7, (3), 2018, pp. 207214.
    10. 10)
      • 24. Emeršič, Ž., Štruc, V., Peer, P.: ‘Ear recognition: more than a survey’, Neurocomputing, 2017, 255, pp. 2639.
    11. 11)
      • 9. Zhang, Y., Mu, Z., Yuan, L., et al: ‘Ear verification under uncontrolled conditions with convolutional neural networks’, IET Biometrics, 2018, 7, (3), pp. 185198.
    12. 12)
      • 20. Besl, P.J., McKay, N.D.: ‘A method for registration of 3-D shapes’, IEEE Trans. Pattern Anal. Mach. Intell., 1992, 14, (2), pp. 239256.
    13. 13)
      • 6. Chowdhury, D.P., Bakshi, S., Guo, G., et al: ‘On applicability of tunable filter bank based feature for ear biometrics: a study from constrained to unconstrained’, J. Med. Syst., 2018, 42, (1), p. 11.
    14. 14)
      • 25. Pflug, A., Busch, C.: ‘Ear biometrics: a survey of detection, feature extraction and recognition methods’, IET Biometrics, 2012, 1, (2), pp. 114129.
    15. 15)
      • 40. Zhang, Y., Hamza, A.B.: ‘Vertex-based anisotropic smoothing of 3D mesh data’. Proc. IEEE Conf. Electrical and Computer Engineering, 2006, pp. 202205.
    16. 16)
      • 29. Kass, M., Witkin, A., Terzopoulos, D.: ‘Snakes: active contour models’, Int. J. Comput. Vis., 1988, 1, (4), pp. 321331.
    17. 17)
      • 28. Ganapathi, I.I., Prakash, S.: ‘False mapped feature removal in spin images based 3D ear recognition’. Proc. Int. Conf. Signal Processing and Integrated Networks, 2016, pp. 620623.
    18. 18)
      • 34. Theoharis, T., Passalis, G., Toderici, G., et al: ‘Unified 3D face and ear recognition using wavelets on geometry images’, Pattern Recognit., 2008, 41, (3), pp. 796804.
    19. 19)
      • 30. Islam, S., Davies, R., Mian, A., et al: ‘A fast and fully automatic ear recognition approach based on 3D local surface features’. Proc. Advanced Concepts for Intelligent Vision Systems, 2008, pp. 10811092.
    20. 20)
      • 13. Yan, P., Bowyer, K.W.: ‘Biometric recognition using 3D ear shape’, IEEE Trans. Pattern Anal. Mach. Intell., 2007, 29, (8), pp. 12971308.
    21. 21)
      • 35. Li, L., Zhang, L., Li, H.: ‘3D ear identification using LC-KSVD and local histograms of surface types’. Proc. IEEE Int. Conf. Multimedia and Expo, 2015, pp. 16.
    22. 22)
      • 8. Emeršič, Ž., Štepec, D., Štruc, V., et al: ‘Training convolutional neural networks with limited training data for ear recognition in the wild’, arXiv preprint arXiv:171109952, 2017.
    23. 23)
      • 11. Prakash, S., Gupta, P.: ‘Human recognition using 3D ear images’, Neurocomputing, 2014, 140, pp. 317325.
    24. 24)
      • 37. Sun, X.P., Li, S.H., Han, F., et al: ‘3D ear shape matching using joint α-entropy’, J. Comput. Sci. Technol., 2015, 30, (3), pp. 565577.
    25. 25)
      • 17. Islam, S.M., Davies, R., Bennamoun, M., et al: ‘Multibiometric human recognition using 3D ear and face features’, Pattern Recognit., 2013, 46, (3), pp. 613627.
    26. 26)
      • 39. Gonzalez, R.C., Woods, R.E.: ‘Digital image processing’ (Prentice-Hall, Inc., 2006, 3rd edn.).
    27. 27)
      • 19. Guo, Y., Sohel, F., Bennamoun, M., et al: ‘Rotational projection statistics for 3D local surface description and object recognition’, Int. J. Comput. Vis., 2013, 105, (1), pp. 6386.
    28. 28)
      • 3. Chen, H., Bhanu, B.: ‘Human ear recognition in 3D’, IEEE Trans. Pattern Anal. Mach. Intell., 2007, 29, (4), pp. 718737.
    29. 29)
      • 23. Abaza, A., Ross, A., Hebert, C., et al: ‘A survey on ear biometrics’, ACM Comput. Surv., 2013, 45, (2), p. 22.
    30. 30)
      • 2. Jain, A.K., Ross, A., Prabhakar, S.: ‘An introduction to biometric recognition’, IEEE Trans. Circuits Syst. Video Technol., 2004, 14, (1), pp. 420.
    31. 31)
      • 5. Kumar, A., Wu, C.: ‘Automated human identification using ear imaging’, Pattern Recognit., 2012, 45, (3), pp. 956968.
    32. 32)
      • 18. Islam, S.M., Davies, R., Bennamoun, M., et al: ‘Efficient detection and recognition of 3D ears’, Int. J. Comput. Vis., 2011, 95, (1), pp. 5273.
    33. 33)
      • 16. Zhou, J., Cadavid, S., Abdel Mottaleb, M.: ‘A computationally efficient approach to 3D ear recognition employing local and holistic features’. Proc. IEEE Conf. Computer Vision and Pattern Recognition Workshops, 2011, pp. 98105.
    34. 34)
      • 12. Yan, P., Bowyer, K.Multi-biometrics 2D and 3D ear recognition’. Proc. Audio- and Video-based Biometric Person Authentication, 2005, pp. 459474.
    35. 35)
      • 22. Sun, X., Wang, G., Wang, L., et al: ‘3D ear recognition using local salience and principal manifold’, Graph. Models, 2014, 76, (5), pp. 402412.
    36. 36)
      • 33. Liu, H., Yan, J.: ‘Multi-view ear shape feature extraction and reconstruction’. Proc. IEEE Conf. Signal-Image Technologies and Image based Systems, 2007, pp. 652658.
    37. 37)
      • 27. Ganapathi, I.I., Prakash, S.: ‘3D ear recognition using global and local features’, IET Biometrics, 2018, 7, (3), pp. 232241.
    38. 38)
      • 36. Liu, Y., Zhang, B., Zhang, D.: ‘Ear-parotic face angle: a unique feature for 3D ear recognition’, Pattern Recognit. Lett., 2015, 53, pp. 915.
    39. 39)
      • 1. Iannarelli, A.: ‘Ear identification’ (Paramount Publishing Company, Freemont, CA, 1989).
    40. 40)
      • 14. Chen, H., Bhanu, B.: ‘Contour matching for 3D ear recognition’. Proc. IEEE Conf. Application of Computer Vision, 2005, vol. 1, pp. 123128.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-bmt.2018.5064
Loading

Related content

content/journals/10.1049/iet-bmt.2018.5064
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address