http://iet.metastore.ingenta.com
1887

Convolutional encoder–decoder networks for pixel-wise ear detection and segmentation

Convolutional encoder–decoder networks for pixel-wise ear detection and segmentation

For access to this article, please select a purchase option:

Buy article PDF
£12.50
(plus tax if applicable)
Buy Knowledge Pack
10 articles for £75.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
IET Biometrics — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

Object detection and segmentation represents the basis for many tasks in computer and machine vision. In biometric recognition systems the detection of the region-of-interest (ROI) is one of the most crucial steps in the processing pipeline, significantly impacting the performance of the entire recognition system. Existing approaches to ear detection, are commonly susceptible to the presence of severe occlusions, ear accessories or variable illumination conditions and often deteriorate in their performance if applied on ear images captured in unconstrained settings. To address these shortcomings, we present a novel ear detection technique based on convolutional encoder-decoder networks (CEDs). We formulate the problem of ear detection as a two-class segmentation problem and design and train a CED-network architecture to distinguish between image-pixels belonging to the ear and the non-ear class. Unlike competing techniques, our approach does not simply return a bounding box around the detected ear, but provides detailed, pixel-wise information about the location of the ears in the image. Experiments on a dataset gathered from the web (a.k.a. in the wild) show that the proposed technique ensures good detection results in the presence of various covariate factors and significantly outperforms competing methods from the literature.

http://iet.metastore.ingenta.com/content/journals/10.1049/iet-bmt.2017.0240
Loading

Related content

content/journals/10.1049/iet-bmt.2017.0240
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address