access icon free Scarce face recognition via two-layer collaborative representation

The recent significant progress in face recognition is mainly achieved using learning-based (LE) techniques via an exhaustive training involving a huge number of face samples. However, in many applications, the number of face images available for training may be very limited. This makes LE techniques impractical for learning discriminative features and models. Thus, limited number of face samples (i.e. scarce data) degrades the recognition performance of most existing methods. To overcome this problem, the authors propose a novel approach based on two-layer collaborative representation to exploit the abundance of samples in some classes to enrich the scarce data in other classes. The first-layer collaborative representation uses the abundance of samples to construct representations for the scarce data. Then, a new face sample is recognised by computing residuals with the second-layer collaborative representation. Extensive experiments on four benchmark face databases demonstrate the effectiveness of their proposed approach which compares favourably against state-of-the-art methods.

Inspec keywords: image representation; face recognition; visual databases; learning (artificial intelligence); feature extraction

Other keywords: exhaustive training; face images; two-layer collaborative representation; benchmark face databases; scarce face recognition; LE techniques; learning-based technique; face samples; discriminative feature learning; first-layer collaborative representation

Subjects: Image recognition; Computer vision and image processing techniques; Spatial and pictorial databases; Knowledge engineering techniques

References

    1. 1)
      • 29. Learned Miller, E., Huang, G.B., Roychowdhury, A., et alLabeled faces in the wild: a survey’ (Springer, 2016), pp. 189248.
    2. 2)
      • 7. Turk, M., Pentland, A.: ‘Eigenfaces for recognition’, J. Cogn. Neurosci., 1991, 3, (1), pp. 7186.
    3. 3)
      • 16. Kim, S.K., Park, Y.J., Toh, K.A., et al: ‘SVM-based feature extraction for face recognition’, Pattern Recognit., 2010, 43, (8), pp. 28712881.
    4. 4)
      • 10. Huang, Y., Xu, D., Cham, T.J.: ‘Face and human gait recognition using image-to-class distance’, IEEE Trans. Circuits Syst. Video Technol., 2010, 2, (3), pp. 431438.
    5. 5)
      • 31. Lecun, Y., Chopra, S., Hadsell, R.: ‘Learning a similarity metric discriminatively, with application to face verification’. IEEE Conf. Computer Vision and Pattern Recognition (CVPR), 2005, vol. 1, pp. 539546.
    6. 6)
      • 40. Phillips, P.J., Flynn, P.J., Scruggs, T., et al: ‘Overview of the face recognition grand challenge’. IEEE Conf. Computer Vision and Pattern Recognition (CVPR), 2005, vol. 1, pp. 947954.
    7. 7)
      • 1. Li, S.Z., Jain, A.K.: ‘Handbook of face recognition’ (Springer, 2011, 2nd edn.).
    8. 8)
      • 36. Lee, K.C., Ho, J., Kriegman, D.J.: ‘Acquiring linear subspaces for face recognition under variable lighting’, IEEE Trans. Pattern Anal. Mach. Intell., 2005, 27, (5), pp. 684698.
    9. 9)
      • 6. Sagonas, C., Antonakos, E., Tzimiropoulos, G., et al: ‘300 faces in-the-wild challenge: database and results’, Image Vis. Comput., 2016, 47, pp. 318.
    10. 10)
      • 19. Wright, J., Yang, A.Y., Ganesh, A., et al: ‘Robust face recognition via sparse representation’, IEEE Trans. Pattern Anal. Mach. Intell., 2009, 31, (2), pp. 210227.
    11. 11)
      • 15. Yoo, S.H., Oh, S.K., Pedrycz, W.: ‘Optimized face recognition algorithm using radial basis function neural networks and its practical applications’, Neural Netw., 2015, 69, pp. 111125.
    12. 12)
      • 27. Schroff, F., Kalenichenko, D., Philbin, J.: ‘Facenet: a unified embedding for face recognition and clustering’. IEEE Conf. Computer Vision and Pattern Recognition (CVPR), 2015, pp. 815823.
    13. 13)
      • 26. Sun, Y., Wang, X., Tang, X.: ‘Deep learning face representation by joint identification-verification’. Int. Conf. Neural Information Processing Systems (NIPS), 2014, vol. 27, pp. 19881996.
    14. 14)
      • 23. Hu, J., Lu, J., Tan, Y.P.: ‘Discriminative deep metric learning for face verification in the wild’. IEEE Conf. Computer Vision and Pattern Recognition (CVPR), 2014, pp. 18751882.
    15. 15)
      • 20. Wang, J., Lu, C., Wang, M., et al: ‘Robust face recognition via adaptive sparse representation’, IEEE Trans. Pattern Anal. Mach. Intell., 2014, 44, (12), pp. 23682378.
    16. 16)
      • 9. He, X., Yan, S., Hu, Y., et al: ‘Face recognition using Laplacian-faces.’, IEEE Trans. Pattern Anal. Mach. Intell., 2005, 27, (3), pp. 328340.
    17. 17)
      • 4. Hassaballah, M., Aly, S.: ‘Face recognition: challenges, achievements and future directions’, IET Comput. Vis., 2015, 9, (4), pp. 614626.
    18. 18)
      • 35. Georghiades, A.S., Belhumeur, P.N., Kriegman, D.J.: ‘From few to many: illumination cone models for face recognition under variable lighting and pose’, IEEE Trans. Pattern Anal. Mach. Intell., 2001, 23, (6), pp. 643660.
    19. 19)
      • 25. Taigman, Y., Yang, M., Ranzato, M., et al: ‘Deepface: closing the gap to human-level performance in face verification’. IEEE Conf. Computer Vision and Pattern Recognition (CVPR), 2014, pp. 17011708.
    20. 20)
      • 30. Sun, Y., Wang, X., Tang, X.: ‘Deep learning face representation from predicting 10,000 classes’. IEEE Conf. Computer Vision and Pattern Recognition (CVPR), 2014, pp. 18911898.
    21. 21)
      • 34. Tan, X., Chen, S., Zhou, Z.H., et al: ‘Face recognition from a single image per person: a survey’, Pattern Recognit., 2006, 39, (9), pp. 17251745.
    22. 22)
      • 41. Mahmood, Z., Ali, T., Khan, S.U.: ‘Effects of pose and image resolution on automatic face recognition’, IET Biometrics, 2016, 5, (2), pp. 111119.
    23. 23)
      • 18. Chen, D., Cao, X., Wang, L., et al: ‘Bayesian face revisited: a joint formulation’. European Conf. Computer Vision (ECCV), 2012, pp. 566579.
    24. 24)
      • 39. Zhang, B., Zhang, L., Zhang, D., et al: ‘Directional binary code with application to polyu near-infrared face database’, Pattern Recognit. Lett., 2010, 31, pp. 23372344.
    25. 25)
      • 2. Li, S., Jain, A.: ‘Encyclopedia of biometrics’ (Springer, 2015).
    26. 26)
      • 5. Marcel, S., Li, S., Nixon, M.: ‘Handbook of biometric anti-spoofing’ (Springer, 2014).
    27. 27)
      • 32. Serre, T.: ‘Learning a dictionary of shape-components in visual cortex: comparison with neurons, humans and machines’ (Massachusetts Institute of Technology, 2006).
    28. 28)
      • 38. Xu, Y., Zhong, A., Yang, J., et al: ‘Bimodal biometrics based on a representation and recognition approach’, Opt. Eng., 2011, 50, (3), p. 183.
    29. 29)
      • 8. Belhumeur, P.N., Hespanha, J.P., Kriegman, D.J.: ‘Eigenfaces vs. Fisherfaces: recognition using class specific linear projection’, IEEE Trans. Pattern Anal. Mach. Intell., 1997, 19, (7), pp. 711720.
    30. 30)
      • 12. Luo, J., Ma, Y., Takikawa, E., et al: ‘Person-specific SIFT features for face recognition’. IEEE Int. Conf. Acoustics, Speech and Signal Processing (ICASSP), 2007, pp. 593596.
    31. 31)
      • 37. Gao, W., Cao, B., Shan, S., et al: ‘The CAS-PEAL large-scale Chinese face database and baseline evaluations’, IEEE Trans. Syst. Man Cybern. A, 2008, 38, pp. 149161.
    32. 32)
      • 28. Parkhi, O.M., Vedaldi, A., Zisserman, A.: ‘Deep face recognition’. British Machine Vision Conf. (BMVC), 2015, pp. 112.
    33. 33)
      • 24. Lecun, Y., Bengio, Y., Hinton, G.: ‘Deep learning’, Nature, 2015, 521, pp. 436444.
    34. 34)
      • 13. Cao, Z., Yin, Q., Tang, X., et al: ‘Face recognition with learning-based descriptor’. IEEE Conf. Computer Vision and Pattern Recognition (CVPR), 2010, pp. 27072714.
    35. 35)
      • 22. Cui, Z., Li, W., Xu, D., et al: ‘Fusing robust face region descriptors via multiple metric learning for face recognition in the wild’. IEEE Conf. Computer Vision and Pattern Recognition (CVPR), 2013, pp. 35543561.
    36. 36)
      • 14. Hussain, S.U., Triggs, B.: ‘Visual recognition using local quantized patterns’. European Conf. Computer Vision (ECCV), 2012, pp. 716729.
    37. 37)
      • 33. Zhang, L., Yang, M., Feng, X.: ‘Sparse representation or collaborative representation: which helps face recognition?’. IEEE Int. Conf. Computer Vision (ICCV), 2011, pp. 471478.
    38. 38)
      • 3. Zhao, W., Chellappa, R., Phillips, P.J., et al: ‘Face recognition: a literature survey’, ACM Comput. Surv., 2003, 35, (4), pp. 399458.
    39. 39)
      • 17. Zhang, X., Gao, Y.: ‘Face recognition across pose: a review’, Pattern Recognit., 2009, 42, (11), pp. 28762896.
    40. 40)
      • 21. Xu, Y., Zhang, D., Yang, J., et al: ‘A two-phase test sample sparse representation method for use with face recognition’, IEEE Trans. Circuits Syst. Video Technol., 2011, 21, (9), pp. 12551262.
    41. 41)
      • 11. Pietikainen, M., Hadid, A., Zhao, G., et al: ‘Computer vision using local binary patterns’ (Springer, 2011).
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-bmt.2017.0193
Loading

Related content

content/journals/10.1049/iet-bmt.2017.0193
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading