http://iet.metastore.ingenta.com
1887

Scarce face recognition via two-layer collaborative representation

Scarce face recognition via two-layer collaborative representation

For access to this article, please select a purchase option:

Buy article PDF
£12.50
(plus tax if applicable)
Buy Knowledge Pack
10 articles for £75.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
IET Biometrics — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

The recent significant progress in face recognition is mainly achieved using learning-based (LE) techniques via an exhaustive training involving a huge number of face samples. However, in many applications, the number of face images available for training may be very limited. This makes LE techniques impractical for learning discriminative features and models. Thus, limited number of face samples (i.e. scarce data) degrades the recognition performance of most existing methods. To overcome this problem, the authors propose a novel approach based on two-layer collaborative representation to exploit the abundance of samples in some classes to enrich the scarce data in other classes. The first-layer collaborative representation uses the abundance of samples to construct representations for the scarce data. Then, a new face sample is recognised by computing residuals with the second-layer collaborative representation. Extensive experiments on four benchmark face databases demonstrate the effectiveness of their proposed approach which compares favourably against state-of-the-art methods.

References

    1. 1)
      • 1. Li, S.Z., Jain, A.K.: ‘Handbook of face recognition’ (Springer, 2011, 2nd edn.).
    2. 2)
      • 2. Li, S., Jain, A.: ‘Encyclopedia of biometrics’ (Springer, 2015).
    3. 3)
      • 3. Zhao, W., Chellappa, R., Phillips, P.J., et al: ‘Face recognition: a literature survey’, ACM Comput. Surv., 2003, 35, (4), pp. 399458.
    4. 4)
      • 4. Hassaballah, M., Aly, S.: ‘Face recognition: challenges, achievements and future directions’, IET Comput. Vis., 2015, 9, (4), pp. 614626.
    5. 5)
      • 5. Marcel, S., Li, S., Nixon, M.: ‘Handbook of biometric anti-spoofing’ (Springer, 2014).
    6. 6)
      • 6. Sagonas, C., Antonakos, E., Tzimiropoulos, G., et al: ‘300 faces in-the-wild challenge: database and results’, Image Vis. Comput., 2016, 47, pp. 318.
    7. 7)
      • 7. Turk, M., Pentland, A.: ‘Eigenfaces for recognition’, J. Cogn. Neurosci., 1991, 3, (1), pp. 7186.
    8. 8)
      • 8. Belhumeur, P.N., Hespanha, J.P., Kriegman, D.J.: ‘Eigenfaces vs. Fisherfaces: recognition using class specific linear projection’, IEEE Trans. Pattern Anal. Mach. Intell., 1997, 19, (7), pp. 711720.
    9. 9)
      • 9. He, X., Yan, S., Hu, Y., et al: ‘Face recognition using Laplacian-faces.’, IEEE Trans. Pattern Anal. Mach. Intell., 2005, 27, (3), pp. 328340.
    10. 10)
      • 10. Huang, Y., Xu, D., Cham, T.J.: ‘Face and human gait recognition using image-to-class distance’, IEEE Trans. Circuits Syst. Video Technol., 2010, 2, (3), pp. 431438.
    11. 11)
      • 11. Pietikainen, M., Hadid, A., Zhao, G., et al: ‘Computer vision using local binary patterns’ (Springer, 2011).
    12. 12)
      • 12. Luo, J., Ma, Y., Takikawa, E., et al: ‘Person-specific SIFT features for face recognition’. IEEE Int. Conf. Acoustics, Speech and Signal Processing (ICASSP), 2007, pp. 593596.
    13. 13)
      • 13. Cao, Z., Yin, Q., Tang, X., et al: ‘Face recognition with learning-based descriptor’. IEEE Conf. Computer Vision and Pattern Recognition (CVPR), 2010, pp. 27072714.
    14. 14)
      • 14. Hussain, S.U., Triggs, B.: ‘Visual recognition using local quantized patterns’. European Conf. Computer Vision (ECCV), 2012, pp. 716729.
    15. 15)
      • 15. Yoo, S.H., Oh, S.K., Pedrycz, W.: ‘Optimized face recognition algorithm using radial basis function neural networks and its practical applications’, Neural Netw., 2015, 69, pp. 111125.
    16. 16)
      • 16. Kim, S.K., Park, Y.J., Toh, K.A., et al: ‘SVM-based feature extraction for face recognition’, Pattern Recognit., 2010, 43, (8), pp. 28712881.
    17. 17)
      • 17. Zhang, X., Gao, Y.: ‘Face recognition across pose: a review’, Pattern Recognit., 2009, 42, (11), pp. 28762896.
    18. 18)
      • 18. Chen, D., Cao, X., Wang, L., et al: ‘Bayesian face revisited: a joint formulation’. European Conf. Computer Vision (ECCV), 2012, pp. 566579.
    19. 19)
      • 19. Wright, J., Yang, A.Y., Ganesh, A., et al: ‘Robust face recognition via sparse representation’, IEEE Trans. Pattern Anal. Mach. Intell., 2009, 31, (2), pp. 210227.
    20. 20)
      • 20. Wang, J., Lu, C., Wang, M., et al: ‘Robust face recognition via adaptive sparse representation’, IEEE Trans. Pattern Anal. Mach. Intell., 2014, 44, (12), pp. 23682378.
    21. 21)
      • 21. Xu, Y., Zhang, D., Yang, J., et al: ‘A two-phase test sample sparse representation method for use with face recognition’, IEEE Trans. Circuits Syst. Video Technol., 2011, 21, (9), pp. 12551262.
    22. 22)
      • 22. Cui, Z., Li, W., Xu, D., et al: ‘Fusing robust face region descriptors via multiple metric learning for face recognition in the wild’. IEEE Conf. Computer Vision and Pattern Recognition (CVPR), 2013, pp. 35543561.
    23. 23)
      • 23. Hu, J., Lu, J., Tan, Y.P.: ‘Discriminative deep metric learning for face verification in the wild’. IEEE Conf. Computer Vision and Pattern Recognition (CVPR), 2014, pp. 18751882.
    24. 24)
      • 24. Lecun, Y., Bengio, Y., Hinton, G.: ‘Deep learning’, Nature, 2015, 521, pp. 436444.
    25. 25)
      • 25. Taigman, Y., Yang, M., Ranzato, M., et al: ‘Deepface: closing the gap to human-level performance in face verification’. IEEE Conf. Computer Vision and Pattern Recognition (CVPR), 2014, pp. 17011708.
    26. 26)
      • 26. Sun, Y., Wang, X., Tang, X.: ‘Deep learning face representation by joint identification-verification’. Int. Conf. Neural Information Processing Systems (NIPS), 2014, vol. 27, pp. 19881996.
    27. 27)
      • 27. Schroff, F., Kalenichenko, D., Philbin, J.: ‘Facenet: a unified embedding for face recognition and clustering’. IEEE Conf. Computer Vision and Pattern Recognition (CVPR), 2015, pp. 815823.
    28. 28)
      • 28. Parkhi, O.M., Vedaldi, A., Zisserman, A.: ‘Deep face recognition’. British Machine Vision Conf. (BMVC), 2015, pp. 112.
    29. 29)
      • 29. Learned Miller, E., Huang, G.B., Roychowdhury, A., et alLabeled faces in the wild: a survey’ (Springer, 2016), pp. 189248.
    30. 30)
      • 30. Sun, Y., Wang, X., Tang, X.: ‘Deep learning face representation from predicting 10,000 classes’. IEEE Conf. Computer Vision and Pattern Recognition (CVPR), 2014, pp. 18911898.
    31. 31)
      • 31. Lecun, Y., Chopra, S., Hadsell, R.: ‘Learning a similarity metric discriminatively, with application to face verification’. IEEE Conf. Computer Vision and Pattern Recognition (CVPR), 2005, vol. 1, pp. 539546.
    32. 32)
      • 32. Serre, T.: ‘Learning a dictionary of shape-components in visual cortex: comparison with neurons, humans and machines’ (Massachusetts Institute of Technology, 2006).
    33. 33)
      • 33. Zhang, L., Yang, M., Feng, X.: ‘Sparse representation or collaborative representation: which helps face recognition?’. IEEE Int. Conf. Computer Vision (ICCV), 2011, pp. 471478.
    34. 34)
      • 34. Tan, X., Chen, S., Zhou, Z.H., et al: ‘Face recognition from a single image per person: a survey’, Pattern Recognit., 2006, 39, (9), pp. 17251745.
    35. 35)
      • 35. Georghiades, A.S., Belhumeur, P.N., Kriegman, D.J.: ‘From few to many: illumination cone models for face recognition under variable lighting and pose’, IEEE Trans. Pattern Anal. Mach. Intell., 2001, 23, (6), pp. 643660.
    36. 36)
      • 36. Lee, K.C., Ho, J., Kriegman, D.J.: ‘Acquiring linear subspaces for face recognition under variable lighting’, IEEE Trans. Pattern Anal. Mach. Intell., 2005, 27, (5), pp. 684698.
    37. 37)
      • 37. Gao, W., Cao, B., Shan, S., et al: ‘The CAS-PEAL large-scale Chinese face database and baseline evaluations’, IEEE Trans. Syst. Man Cybern. A, 2008, 38, pp. 149161.
    38. 38)
      • 38. Xu, Y., Zhong, A., Yang, J., et al: ‘Bimodal biometrics based on a representation and recognition approach’, Opt. Eng., 2011, 50, (3), p. 183.
    39. 39)
      • 39. Zhang, B., Zhang, L., Zhang, D., et al: ‘Directional binary code with application to polyu near-infrared face database’, Pattern Recognit. Lett., 2010, 31, pp. 23372344.
    40. 40)
      • 40. Phillips, P.J., Flynn, P.J., Scruggs, T., et al: ‘Overview of the face recognition grand challenge’. IEEE Conf. Computer Vision and Pattern Recognition (CVPR), 2005, vol. 1, pp. 947954.
    41. 41)
      • 41. Mahmood, Z., Ali, T., Khan, S.U.: ‘Effects of pose and image resolution on automatic face recognition’, IET Biometrics, 2016, 5, (2), pp. 111119.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-bmt.2017.0193
Loading

Related content

content/journals/10.1049/iet-bmt.2017.0193
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address