http://iet.metastore.ingenta.com
1887

Palm vein recognition using a high dynamic range approach

Palm vein recognition using a high dynamic range approach

For access to this article, please select a purchase option:

Buy article PDF
£12.50
(plus tax if applicable)
Buy Knowledge Pack
10 articles for £75.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
IET Biometrics — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

In this study, the authors propose a novel approach for palm vein recognition relying on high dynamic range (HDR) imaging. Specifically, the authors speculate that the exploitation of multiple-exposure vein images guarantees better recognition performance than a baseline system relying on single-exposure acquisitions. To verify the authors’ assumptions, a multiple-exposure dataset is collected from 86 subjects, with 12 sets of palm vein images captured for each user. Each set is composed of five images, acquired at different exposures, which can be fused to generate a HDR representation of the actual vein pattern. Local binary pattern and local derivative pattern are employed to extract features from single-exposure images, raw HDR images, and tone-mapped HDR images. The obtained experimental results show that significant performance improvement can be achieved when discriminative features are extracted from HDR contents, with respect to the use of single-exposure images.

References

    1. 1)
      • 1. Jain, A.K., Ross, A., Prabhakar, S.: ‘An introduction to biometric recognition’, IEEE Trans. Circuits Syst. Video Technol., 2004, 14, (1), pp. 420.
    2. 2)
      • 2. Miura, N., Nagasaka, A., Miyatake, T.: ‘Feature extraction of finger-vein patterns based on repeated line tracking and its application to personal identification’, Mach. Vis. Appl., 2004, 15, (4), pp. 194203.
    3. 3)
      • 3. Piciucco, E., Maiorana, E., Kauba, C., et al: ‘Cancelable biometrics for finger vein recognition’. Proc. 1st Int. Workshop on Sensing, Processing and Learning for Intelligent Machines, July 2016, pp. 15.
    4. 4)
      • 4. Kauba, C., Piciucco, E., Maiorana, E., et al: ‘Advanced variants of feature level fusion for finger vein recognition’. Proc. Int. Conf. Biometrics Special Interest Group, September 2016, pp. 17.
    5. 5)
      • 5. Banterle, F., Artusi, A., Debattista, K., et al: ‘Advanced high dynamic range imaging: theory and practice’ (CRC Press, Natrick, MA, USA, 2011).
    6. 6)
      • 6. McCann, J.J., Rizzi, A.: ‘The art and science of HDR imaging’, vol. 26. (John Wiley & Sons, Chichester, UK, 2011).
    7. 7)
      • 7. Chalmers, A., Campisi, P., Shirley, P., et al: ‘High dynamic range video: concepts, technologies and applications’ (Academic Press, London, UK, 2016).
    8. 8)
      • 8. Rosdi, B.A., Shing, C.W., Suandi, S.A.: ‘Finger vein recognition using local line binary pattern’, Sensors, 2011, 11, (12), pp. 1135711371.
    9. 9)
      • 9. Lee, J.C.: ‘A novel biometric system based on palm vein image’, Pattern Recognit. Lett., 2012, 33, (12), pp. 15201528.
    10. 10)
      • 10. Lin, C.L., Fan, K.C.: ‘Biometric verification using thermal images of palm-dorsa vein patterns’, IEEE Trans. Circuits Syst. Video Technol., 2004, 14, (2), pp. 199213.
    11. 11)
      • 11. Pascual, J.E.S., Uriarte-Antonio, J., Sanchez-Reillo, R., et al: ‘Capturing hand or wrist vein images for biometric authentication using low-cost devices’. Proc. 6th Int. Conf. on Intelligent Information Hiding and Multimedia Signal Processing, October 2010, pp. 318322.
    12. 12)
      • 12. Wang, Y., Li, K., Cui, J.: ‘Hand-dorsa vein recognition based on partition local binary pattern’. Proc. 10th Int. Conf. on Signal Processing, October 2010, pp. 16711674.
    13. 13)
      • 13. Kang, W., Wu, Q.: ‘Contactless palm vein recognition using a mutual foreground-based local binary pattern’, IEEE Trans. Inf. Forensics Sec., 2014, 9, (11), pp. 19741985.
    14. 14)
      • 14. Lee, E.C., Lee, H.C., Park, K.R.: ‘Finger vein recognition using minutia-based alignment and local binary pattern-based feature extraction’, Int. J. Imaging Syst. Technol., 2009, 19, (3), pp. 179186.
    15. 15)
      • 15. Mirmohamadsadeghi, L., Drygajlo, A.: ‘Palm vein recognition with local binary patterns and local derivative patterns’. Proc. Int. Joint Conf. on Biometrics, October 2011, pp. 16.
    16. 16)
      • 16. Zhou, Y., Kumar, A.: ‘Human identification using palm-vein images’, IEEE Trans. Inf. Forensics Sec., 2011, 6, (4), pp. 12591274.
    17. 17)
      • 17. Kang, W., Liu, Y., Wu, Q., et al: ‘Contact-free palm-vein recognition based on local invariant features’, PLoS ONE, 2014, 9, (5), p. 97548.
    18. 18)
      • 18. Pan, M., Kang, W.: ‘Palm vein recognition based on three local invariant feature extraction algorithms’. Proc. Chinese Conf. on Biometric Recognition, December 2011, pp. 116124.
    19. 19)
      • 19. Kauba, C., Reissig, J., Uhl, A.: ‘Pre-Processing cascades and fusion in finger vein recognition’. Proc. Int. Conf. Biometrics Special Interest Group, September 2014, pp. 16.
    20. 20)
      • 20. Hsu, C.B., Hao, S.S., Lee, J.C.: ‘Personal authentication through dorsal hand vein patterns’, Opt. Eng., 2011, 50, (8), pp. 087201.
    21. 21)
      • 21. Liu, Z., Yin, Y., Wang, H., et al: ‘Finger vein recognition with manifold learning’, J. Netw. Comput. Appl., 2010, 33, (3), pp. 275282.
    22. 22)
      • 22. Wang, J.G., Yau, W.Y., Suwandy, A., et al: ‘Person recognition by fusing palmprint and palm vein images based on ‘Laplacianpalm’ representation’, Pattern Recognit., 2008, 41, (5), pp. 15141527.
    23. 23)
      • 23. Kumar, A., Prathyusha, K.V.: ‘Personal authentication using hand vein triangulation and knuckle shape’, IEEE Trans. Image Process., 2009, 18, (9), pp. 21272136.
    24. 24)
      • 24. Mirmohamadsadeghi, L., Andrzej, D.: ‘Palm vein recognition with local texture patterns’, IET Biometrics, 2014, 3, (4), pp. 198206.
    25. 25)
      • 25. ‘CASIA Multi-Spectral Palm Print Image Database V1.0’, Chinese Academy of Sciences Institute of Automation (CASIA), [Online]. Available at http://biometrics.idealtest.org/.
    26. 26)
      • 26. Tome, P., Marcel, S.: ‘Palm vein database and experimental framework for reproducible research’. Proc. Int. Conf. Biometrics Special Interest Group, September 2015, pp. 17.
    27. 27)
      • 27. Pratiwi, A.Y., Budi, W.T.A., Ramadhani, K.N.: ‘Identity recognition with palm vein feature using local binary pattern rotation Invariant’. Proc. 4th Int. Conf. on Information and Communication Technology, May 2016, pp. 16.
    28. 28)
      • 28. Ladoux, P.O., Rosenberger, C., Dorizzi, B.: ‘Palm vein verification system based on SIFT matching’. Proc. 3rd Int. Conf. on Biometrics, June 2009, pp. 12901298.
    29. 29)
      • 29. Zhang, D., Guo, Z., Lu, G., et al: ‘An online system of multispectral palmprint verification’, IEEE Trans. Instrum. Meas., 2011, 59, (2), pp. 480490.
    30. 30)
      • 30. Lee, Y.P.: ‘Palm vein recognition based on a modified (2D)2LDA’, Signal Image Video Process., 2015, 9, (1), pp. 229242.
    31. 31)
      • 31. Zhang, Y.B., Li, Q., You, J., et al: ‘Palm vein extraction and matching for personal authentication’, Proc. Int. Conf. Adv. Vis. Inf. Syst., June 2007, pp. 154164.
    32. 32)
      • 32. Wu, K.S., Lee, J.C., Lo, T.M., et al: ‘A secure palm vein recognition system’, J. Syst. Softw., 2013, 86, (11), pp. 28702876.
    33. 33)
      • 33. Wirayuda, T.A.B.: ‘Palm vein recognition based-on minutiae feature and feature matching’. Proc. Int. Conf. on Electrical Engineering and Informatics, August 2015, pp. 350355.
    34. 34)
      • 34. Cancian, P., Di Donato, G.W., Rana, V., et al: ‘An embedded Gabor-based palm vein recognition system’. Proc. Int. Conf. on Biomedical & Health Informatics, February 2017, pp. 405408.
    35. 35)
      • 35. Yang, J., Yang, J.: ‘Multi-channel Gabor filter design for finger-vein image enhancement’. Proc. 5th Int. Conf. on Image and Graphics, September 2009, pp. 8791.
    36. 36)
      • 36. Djerouni, A., Hamada, H., Loukil, A., et al: ‘Dorsal hand vein image contrast enhancement techniques’, Int. J. Comput. Sci., 2014, 11, (1), pp. 137142.
    37. 37)
      • 37. Xu, J., Jianjiang, C., Dingyu, X., et al: ‘Near infrared vein image acquisition system based on image quality assessment’. Proc. Int. Conf. on Electronics, Communications and Control, September 2011, pp. 922925.
    38. 38)
      • 38. Chen, L., Wang, J., Yang, S., et al: ‘A finger vein image-based personal identification system with self-adaptive illuminance control’, IEEE Trans. Instrum. Meas., 2017, 66, (2), pp. 294304.
    39. 39)
      • 39. Hao, Y., Sun, Z., Tan, T., et al: ‘Multispectral palm image fusion for accurate contact-free palmprint recognition’. Proc. 15th IEEE Int. Conf. on Image Processing, October 2008, pp. 281284.
    40. 40)
      • 40. Yan, X., Kang, W., Deng, F., et al: ‘Palm vein recognition based on multi-sampling and feature-level fusion’, Neurocomputing, 2015, 151, (2), pp. 798807.
    41. 41)
      • 41. Reinhard, E., Heidrich, W., Debevec, P., et al: ‘High dynamic range imaging: acquisition, display, and image-based lighting’ (Morgan Kaufmann, Burlington, MA, USA, 2010).
    42. 42)
      • 42. Kuang, J., Johnson, G.M., Fairchild, M.D.: ‘iCAM06: a refined image appearance model for HDR image rendering’, J. Vis. Commun. Image Represent., 2007, 18, (5), pp. 406414.
    43. 43)
      • 43. Chiu, K., Herf, M., Shirley, P., et al: ‘Spatially nonuniform scaling functions for high contrast images’, Proc. Graph. Interface, May 1993, pp. 245245.
    44. 44)
      • 44. Drago, F., Myszkowski, K., Annen, T., et al: ‘Adaptive logarithmic mapping for displaying high contrast’, Comput. Graph. Forum, 2003, 22, (3), pp. 419426.
    45. 45)
      • 45. Farbman, Z., Fattal, R., Lischinski, D., et al: ‘Edge-preserving decompositions for multi-scale tone and detail manipulation’, ACM Trans. Graph., 2008, 27, (3), p. 67.
    46. 46)
      • 46. Reinhard, E., Stark, M., Shirley, P., et al: ‘Photographic tone reproduction for digital images’, ACM Trans. Graph., 2002, 21, (3), pp. 267276.
    47. 47)
      • 47. Shan, Q., Jia, J., Brown, M.S.: ‘Globally optimized linear windowed tone mapping’, IEEE Trans. Vis. Comput. Graph., 2010, 16, (4), pp. 663675.
    48. 48)
      • 48. Shibata, T., Tanaka, M., Okutomi, M: ‘Gradient-domain image reconstruction framework with intensity-range and base-structure constraints’. Proc. IEEE Conf. on Computer Vision and Pattern Recognition, June 2016, pp. 27452753.
    49. 49)
      • 49. Ojala, T., Pietikainen, M., Harwood, D.: ‘Performance evaluation of texture measures with classification based on Kullback discrimination of distributions’. Proc. 12th Int. Conf. on Computer Vision & Image Processing, 1994, pp. 582585.
    50. 50)
      • 50. Zhang, B., Gao, Y., Zhao, S., et al: ‘Local derivative pattern versus local binary pattern: face recognition with high-order local pattern descriptor’, IEEE Trans. Image Process., 2010, 19, (2), pp. 533544.
    51. 51)
      • 51. Swain, M.J., Ballard, D.H.: ‘Color indexing’, Int. J. Comput. Vis., 1991, 7, (1), pp. 1132.
    52. 52)
      • 52. Zhang, J., Yang, J.: ‘Finger-vein image enhancement based on combination of gray-level grouping and circular Gabor filter’. Proc. Int. Conf. on Information Engineering and Computer Science, December 2009, pp. 14.
    53. 53)
      • 53. Zhao, J., Tian, H., Xu, W., et al: ‘A new approach to hand vein image enhancement’. Proc. 2nd Int. Conf. on Intelligent Computation Technology and Automation, October 2009, pp. 499501.
    54. 54)
      • 54. Michael, G.K.O., Teoh, A.B.J., Connie, T.: ‘A contactless biometric system using palm print and palm vein features’ (INTECH Open Access Publisher, London, UK, 2011).
    55. 55)
      • 55. McCann, J.: ‘Lessons learned from Mondrians applied to real images and color gamuts’. Proc. IS&T/SID Color Imaging Conf., 1999, Scottsdale, 1999, vol. 7, pp. 18.
    56. 56)
      • 56. Ross, A.A., Nandakumar, K., Jain, A.: ‘Handbook of multibiometrics’ (Springer Science & Business Media, New York, USA, 2006).
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-bmt.2017.0192
Loading

Related content

content/journals/10.1049/iet-bmt.2017.0192
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address