access icon free Extended StirTrace benchmarking of biometric and forensic qualities of morphed face images

Since its introduction in 2014, the face morphing forgery (FMF) attack has received significant attention from the biometric and media forensic research communities. The attack aims at creating artificially weakened templates which can be successfully matched against multiple persons. If successful, the attack has an immense impact on many biometric authentication scenarios including the application of electronic machine-readable travel document (eMRTD) at automated border control gates. We extend the StirTrace framework for benchmarking FMF attacks by adding five issues: a novel three-fold definition for the quality of morphed images, a novel FMF realisation (combined morphing), a post-processing operation to simulate the digital image format used in eMRTD (passport scaling 15 kB), an automated face recognition system (VGG face descriptor) as additional means for biometric quality assessment and two feature spaces for FMF detection (keypoint features and fusion of keypoint and Benford features) as additional means for forensic quality assessment. We show that the impact of StirTrace post-processing operations on the biometric quality of morphed face images is negligible except for two noise operators and passport scaling 15 kB, the impact on the forensic quality depends on the type of post-processing, and the new FMF realisation outperforms the previously considered ones.

Inspec keywords: authorisation; feature extraction; face recognition; image forensics; document image processing; image fusion; image morphing

Other keywords: StirTrace post-processing operations; biometric qualities; FMF detection; morphed face images; automated border control gates; feature spaces; post-processing operation; automated face recognition system; forensic qualities; digital image format; passport scaling; face morphing forgery attack; media forensic research communities; morphed image quality; Benford features; keypoint features; biometric quality assessment; noise operators; extended StirTrace benchmarking; FMF attacks; biometric authentication scenarios; combined morphing; digital image simulation; forensic quality assessment; eMRTD; keypoint fusion; electronic machine-readable travel document; VGG face descriptor; novel FMF realisation; artificially weakened templates

Subjects: Computer vision and image processing techniques; Data security; Image recognition; Document processing and analysis techniques

References

    1. 1)
      • 21. Frontex: ‘Best practice technical guidelines for automated border control (abc) systems’. Tech. Rep., 2015.
    2. 2)
      • 29. Kanopoulos, N., Vasanthavada, N., Baker, R.: ‘Design of an image edge detection filter using the sobel operator’, IEEE J. Solid-State Circuits, 1988, 23, (2), pp. 358367, doi: 10.1109/4.996.
    3. 3)
      • 30. Ross, A., Nandakumar, K., Jain, A.K.: ‘Introduction to multibiometrics’ (Springer US, Boston, MA, 2008), pp. 271292.
    4. 4)
      • 15. Perez, P., Gangnet, M., Blake, A.: ‘Poisson image editing’, ACM Trans. Graph., 2003, 22, (3), pp. 313318.
    5. 5)
      • 28. Canny, J.: ‘A computational approach to edge detection’, IEEE Trans. Pattern Anal. Mach. Intell., 1986, 8, (6), pp. 679698.
    6. 6)
      • 32. Neumann, C., Champod, C., Puch-Solis, R., et al: ‘Computation of likelihood ratios in fingerprint identification for configurations of three minutiae’, J. Forensic Sci., 2006, 51, (6), pp. 12551266.
    7. 7)
      • 17. Luxand: ‘Luxand – detect and recognize faces and facial features with luxand facesdk 2016’. Available at https://www.luxand.com/facesdk/, last accessed 7 July 2017.
    8. 8)
      • 18. Huang, G.B., Ramesh, M., Berg, T., et al: ‘Labeled faces in the wild: a database for studying face recognition in unconstrained environments’. Technical Report 07-49, University of Massachusetts, Amherst, 2007.
    9. 9)
      • 27. Mair, E., Hager, G.D., Burschka, D., et al: ‘Adaptive and generic corner detection based on the accelerated segment test’. Proc. of the 11th European Conf. Computer Vision: Part II, ECCV'10, Berlin, Heidelberg, 2010, pp. 183196.
    10. 10)
      • 2. Hildebrandt, M., Dittmann, J.: ‘Stirtracev2.0: enhanced benchmarking and tuning of printed fingerprint detection’, IEEE Trans. Inf. Forensics Sec., 2015, 10, (4), pp. 833848.
    11. 11)
      • 31. Hall, M.: ‘The weka data mining software: An update’. SIGKDD Explorations, 2009.
    12. 12)
      • 8. Mallick, S.: ‘Face morph using opencv – c++/python’. Available at http://www.learnopencv.com/face-morph-using-opencv-cpp-python/, last accessed 7 July 2017.
    13. 13)
      • 13. Maio, D., Maltoni, D., Cappelli, R., et al: ‘Fvc-ongoing – benchmark area: face morphing challenge’, 2018. Available at https://biolab.csr.unibo.it/FVCOnGoing/UI/Form/BenchmarkAreas.
    14. 14)
      • 4. Makrushin, A., Neubert, T., Dittmann, J.: ‘Automatic generation and detection of visually faultless facial morphs’. Proc. of the 12th Int. Joint Conf. Computer Vision, Imaging and Computer Graphics Theory and Applications - Volume 6: VISAPP, (VISIGRAPP 2017), INSTICC, 2017, pp. 3950.
    15. 15)
      • 19. Parkhi, O.M., Vedaldi, A., Zisserman, A.: ‘Deep face recognition’. British Machine Vision Conf., 2015.
    16. 16)
      • 25. Rublee, E., Rabaud, V., Konolige, K., et al: ‘Orb: An efficient alternative to sift or surf’. Proc. of the 2011 Int. Conf. Computer Vision, ICCV ‘11, Washington, DC, USA, 2011, pp. 25642571.
    17. 17)
      • 1. Hildebrandt, M., Neubert, T., Makrushin, A., et al: ‘Benchmarking face morphing forgery detection: application of stirtrace for impact simulation of different processing steps’. 5th Int. Workshop on Biometrics and Forensics, IWBF 2017, Coventry, UK, 4–5 April 2017, pp. 16.
    18. 18)
      • 26. Rosten, E., Drummond, T.: ‘Fusing points and lines for high performance tracking’. Proc. of the Tenth IEEE Int. Conf. Computer Vision – Volume 2, ICCV ‘05, Washington, DC, USA, 2005, pp. 15081515.
    19. 19)
      • 6. Ferrara, M., Franco, A., Maltoni, D.: ‘On the effects of image alterations on face recognition accuracy’. Face Recognition Across the Imaging Spectrum, 2016, pp. 195222.
    20. 20)
      • 7. Wolberg, G.: ‘Image morphing: a survey’. Vis. Comput., 1998, 14, (8), pp. 360372.
    21. 21)
      • 20. Milborrow, S., Nicolls, F.: ‘Active shape models with sift descriptors and Mars’. Int. Conf. Computer Vision Theory and Applications (VISAPP), 2014.
    22. 22)
      • 11. Wolf, A.: ‘Portrait quality (reference facial images for mrtd)’. Version: 0.06. Published by authority of the Secretary General, 2016.
    23. 23)
      • 10. Chen, W., Shi, Y.Q., Su, W.: ‘Image splicing detection using 2-d phase congruency and statistical moments of characteristic function’, 2007, 6505, p. 65050R8.
    24. 24)
      • 16. Tanaka, M., Kamio, R., Okutomi, M.: ‘Seamless image cloning by a closed form solution of a modified Poisson problem’. Proc. of 5th ACM SIGGRAPH Conf. and Exhibition on Computer Graphics and Interactive Techniques in Asia (SIGGRAPH Asia 2012), p.c08-0164-1-1, 2012.
    25. 25)
      • 23. Lowe, D.G.: ‘Object recognition from local scale-invariant features’. Proc. of the Int. Conf. Computer Vision-Volume 2 – Volume 2, ICCV ‘99, Washington, DC, USA, 1999, p. 1150.
    26. 26)
      • 14. Hancock, P.: ‘Psychological image collection at stirling (pics) – 2d face sets – Utrecht ecvp’. Available at http://pics.psych.stir.ac.uk/, last accessed 14 July 2017.
    27. 27)
      • 5. Kraetzer, C., Makrushin, A., Neubert, T., et al: ‘Modeling attacks on photo-id documents and applying media forensics for the detection of facial morphing’. Proc. of the 5th ACM Workshop on Information Hiding and Multimedia Security, IHMMSec ‘17, New York, NY, USA, 2017, pp. 2132.
    28. 28)
      • 22. Perez-Gonzalez, F., Heileman, G.L., Abdallah, C.: ‘Benford's law in image processing’. IEEE Int. Conf. Image Processing, September 2007, vol. 1, pp. I-405I-408.
    29. 29)
      • 3. Ferrara, M., Franco, A., Maltoni, D.: ‘The magic passport’. IEEE Int. Joint Conf. Biometrics (IJCB), 2014, pp. 17.
    30. 30)
      • 24. Bay, H., Ess, A., Tuytelaars, T., et al: ‘Speeded-up robust features (surf)’, Comput. Vis. Image Underst., 2008, 110, (3), pp. 346359.
    31. 31)
      • 9. Raghavendra, R., Raja, K.B., Busch, C.: ‘Detecting morphed face images’. 8th IEEE Int. Conf. on Biometrics Theory, Applications and Systems, BTAS 2016, Niagara Falls, NY, USA, 6–9 September 2016, pp. 17.
    32. 32)
      • 12. Robertson, D.J., Kramer, R.S., Burton, A.M.: ‘Fraudulent id using face morphs: experiments on human and automatic recognition’, PloS One, 2017, 12, (3), pp. 112.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-bmt.2017.0147
Loading

Related content

content/journals/10.1049/iet-bmt.2017.0147
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading