http://iet.metastore.ingenta.com
1887

access icon openaccess Non-reference image quality assessment and natural scene statistics to counter biometric sensor spoofing

  • HTML
    92.4736328125Kb
  • XML
    114.7392578125Kb
  • PDF
    3.280003547668457MB
Loading full text...

Full text loading...

/deliver/fulltext/iet-bmt/7/4/IET-BMT.2017.0146.html;jsessionid=3xgxfhv29rag.x-iet-live-01?itemId=%2fcontent%2fjournals%2f10.1049%2fiet-bmt.2017.0146&mimeType=html&fmt=ahah

References

    1. 1)
      • 1. Marcel, S., Nixon, M.S., Li, S.Z. (Eds.): ‘Handbook of biometric anti-spoofing’ (Springer, London, 2014).
    2. 2)
      • 2. Gragnaniello, D., Poggi, G., Sansone, C., et al: ‘An investigation of local descriptors for biometric spoofing detection’, IEEE Trans. Inf. Forensics Sec., 2015, 10, (4), pp. 849861.
    3. 3)
      • 3. Menotti, D., Chiachia, G., Pinto, A., et al: ‘Deep representations for iris, face, and fingerprint spoofing detection’, IEEE Trans. Inf. Forensics Sec., 2015, 10, (4), pp. 864879.
    4. 4)
      • 4. Raghavendra, R., Raja, K., Venkatesh, S., et al: ‘Transferable deep convolutional neural network features for fingervein presentation attack detection’. Proc. of the 5th Int. Workshop on Biometrics and Forensics (IWBF'17), Coventry, UK, 2017, pp. 16.
    5. 5)
      • 5. Galbally, J., Marcel, S., Fierrez, J.: ‘Image quality assessment for fake biometric detection: application to iris, fingerprint, and face recognition’, IEEE Trans. Image Process., 2014, 23, (2), pp. 710724.
    6. 6)
      • 6. Bhogal, A.P.S, Söllinger, D., Trung, P., et al: ‘Non-reference image quality assessment for biometric presentation attack detection (best reviewed papers session)’. Proc. of the 5th Int. Workshop on Biometrics and Forensics (IWBF'17), Coventry, UK, 2017, pp. 16.
    7. 7)
      • 7. Wen, D., Han, H., Jain, A.K.: ‘Face spoof detection with image distortion analysis’, IEEE Trans. Inf. Forensics Sec., 2015, 10, (4), pp. 746761.
    8. 8)
      • 8. Bhogal, A.P.S, Söllinger, D., Trung, P., et al: ‘Non-reference image quality assessment for fingervein presentation attack detection’. Proc. of 20th Scandinavian Conf. on Image Analysis (SCIA'17)(Springer Lecture Notes on Computer Science, 10269), 2017, pp. 184196.
    9. 9)
      • 9. Nouri, A., Charrier, C., Saadane, A., et al: ‘Statistical comparison of no-reference images quality assessment algorithms’. Proc. of the Colour and Visual Computing Symp. (CVCS'13), 2013.
    10. 10)
      • 10. Charrier, C., Saadane, A., Fernandez-Maloigne, C.: ‘Comparison of no-reference image quality assessment machine learning-based algorithms on compressed images’. Image Quality and System Performance XII, volume 9396 of Proceedings of SPIE, 2015.
    11. 11)
      • 11. Mittal, A., Soundararajan, R., Bovik, A.C.: ‘Making image quality assessment robust’. Proceedings of the 46th Asilomar Conf. on Signals, Systems and Computers (ASILOMAR), 2012.
    12. 12)
      • 12. Saad, M., Bovik, A.C., Charrier, C.: ‘Blind image quality assessment: a natural scene statistics approach in the DCT domain’, IEEE Trans. Image Process., 2012, 21, (8), pp. 33393352.
    13. 13)
      • 13. Gabarda, S., Cristobal, G.: ‘Blind image quality assessment through anisotropy’, J. Opt. Soc. Am. A, 2007, 24, pp. 2451.
    14. 14)
      • 14. Mittal, A., Moorthy, A.K., Bovik, A.C.: ‘No-reference image quality assessment in the spatial domain’, IEEE Trans. Image Process., 2012, 21, (12), pp. 46954708.
    15. 15)
      • 15. Moorthy, A.K., Bovik, A.C.: ‘Blind image quality assessment: from natural scene statistics to perceptual quality’, IEEE Trans. Image Process., 2011, 20, (12), pp. 33503364.
    16. 16)
      • 16. Moorthy, A.K., Bovik, A.C.: ‘A two-step framework for constructing blind image quality indices’, IEEE Signal Process. Lett., 2010, 17, (5), pp. 513516.
    17. 17)
      • 17. Fierrez, J., Ortega-Garcia, J., Torre-Toledano, D., et al: ‘Biosec baseline corpus: a multimodal biometric database’, Pattern Recognit., 2007, 40, (4), pp. 13891392.
    18. 18)
      • 18. Galbally, J., Ortiz-Lopez, J., Fierrez, J., et al: ‘Iris liveness detection based on quality related features’. Proc. of the IAPR/IEEE Int. Conf. on Biometrics (ICB'12), March 2012, pp. 271276.
    19. 19)
      • 19. Galbally, J., Alonso-Fernandez, F., Fierrez, J., et al: ‘A high performance fingerprint liveness detection method based on quality related features’, Future Gener. Comput. Syst., 2012, 28, pp. 311321.
    20. 20)
      • 20. Bhardwaj, I., Londhe, N.D., Kopparau, S.K.: ‘A spoof resistant multibiometric system based on the physiological and behavioral characteristics of fingerprint’, Pattern Recognit., 2017, 62, pp. 214224.
    21. 21)
      • 21. Lu, M., Chen, Z., Sheng, W.: ‘Fingerprint liveness detection based on pore analysis’. Biometric Recognition – Proc. of the Chinese Conf. on Biometric Recognition (CCBR'15, Springer LNCS, 9428), 2015, pp. 233240.
    22. 22)
      • 22. Chingovska, I., Anjos, A., Marcel, S.: ‘On the effectiveness of local binary patterns in face anti-spoofing’. Proc. of the Int. Conf. of the Biometrics Special Interest Group (BIOSIG'16), September 2012.
    23. 23)
      • 23. Tome, P., Raghavendra, R., Busch, C., et al: ‘The 1st competition on counter measures to finger vein spoofing attacks’. 2015 Int. Conf. on Biometrics (ICB), May 2015, pp. 513518.
    24. 24)
      • 24. Tirunagari, S., Poh, N., Bober, M., et al: ‘Windowed DMD as a microtexture descriptor for finger vein counter-spoofing in biometrics’. 2015 IEEE Int. Workshop on Information Forensics and Security (WIFS), November 2015, pp. 16.
    25. 25)
      • 25. Raghavendra, R., Busch, C.: ‘Presentation attack detection algorithms for finger vein biometrics: a comprehensive study’. 2015 11th Int. Conf. on Signal-Image Technology Internet-Based Systems (SITIS), November 2015, pp. 628632.
    26. 26)
      • 26. Kocher, D., Schwarz, S., Uhl, A.: ‘Empirical evaluation of LBP-extension features for finger vein spoofing detection’. Proc. of the Int. Conf. of the Biometrics Special Interest Group (BIOSIG'16), Darmstadt, Germany, 2016, p. 8.
    27. 27)
      • 27. Chang, C.-C., Lin, C.-J.: ‘LIBSVM: a library for support vector machines’, ACM Trans. Intell. Syst. Technol., 2011, 2, (27), pp. 127. Available at http://www.csie.ntu.edu.tw/cjlin/libsvm.
    28. 28)
      • 28. Rattani, A., Scheirer, W.J., Ross, A.: ‘Open set fingerprint spoof detection across novel fabrication materials’, IEEE Trans. Inf. Forensics Sec. (T-IFS), 2015, 10, pp. 24472460.
    29. 29)
      • 29. Torralba, A., Efros, A.: ‘Unbiased look at dataset bias’. Proc. of the IEEE Conf. on Computer Vision and Pattern Recognition (CVPR'11), 2011.
    30. 30)
      • 30. Guan, Y., Wei, X., Li, C.-T.: ‘On the generalization power of face and gait in gender recognition’, Int. J. Digit. Crime Forensics, 2014, 6, (1), pp. 18.
    31. 31)
      • 31. Scheirer, W.J., Rocha, A., Sapkota, A., et al: ‘Towards open set recognition’, IEEE Trans. Pattern Anal. Mach. Intell. (T-PAMI), 2013, 35, pp. 17571772.
    32. 32)
      • 32. Scheirer, W.J., Jain, L.P., Boult, T.E.: ‘Probability models for open set recognition’, IEEE Trans. Pattern Anal. Mach. Intell. (T-PAMI), 2014, 36, pp. 23172324.
    33. 33)
      • 33. Jain, L.P., Scheirer, W.J., Boult, T.E.: ‘Multi-class open set recognition using probability of inclusion’. The European Conf. on Computer Vision (ECCV), September 2014.
    34. 34)
      • 34. Heflin, B., Scheirer, W.J., Boult, T.E.: ‘Detecting and classifying scars, marks, and tattoos found in the wild’. The IEEE Int. Conf. on Biometrics: Theory, Applications and Systems (BTAS), September 2012.
    35. 35)
      • 35. Costa, F.O., Silva, E., Eckmann, M., et al: ‘Open set source camera attribution and device linking’, Pattern Recognit. Lett., 2014, 36, pp. 92101.
    36. 36)
      • 36. Akhtar, Z., Micheloni, C., Foresti, G.L.: ‘Correlation based fingerprint liveness detection’. Proc. of the Int. Conf. on Biometrics (ICB'15), May 2015, pp. 305310.
    37. 37)
      • 37. Marasco, E., Wild, P., Cukic, B.: ‘Robust and interoperable fingerprint spoof detection via convolutional neural networks’. Proc. of the IEEE Symp. on Technologies for Homeland Security (HST'16), May 2016, pp. 16.
    38. 38)
      • 38. Chugh, T., Cao, K., Jain, A.K.: ‘Fingerprint spoof detection using minutiae-based local patches’. Proc. of the Int. Joint Conf. on Biometrics (IJCB'17), 2017.
    39. 39)
      • 39. Patel, K, Han, H., Jain, A.K.: ‘Cross-database face antispoofing with robust feature representation’. Proc. of the 11th Chinese Conf. on Biometric Recognition (CCBR'16), 2016, pp. 611619.
    40. 40)
      • 40. Korshunov, P., Marcel, S.: ‘Cross-database evaluation of audio-based spoofing detection systems’. Proc. of the Annual Conf. of the Int. Speech Communication Association, 2016, pp. 17051709.
    41. 41)
      • 41. Doyle, J.S., Bowyer, K.W., Flynn, P.J.: ‘Variation in accuracy of textured contact lens detection based on sensor and lens pattern’. Proc. of the Int. Conf. on Biometrics: Theory, Applications and Systems (BTAS'13), September 2013, pp. 17.
    42. 42)
      • 42. Czajka, A., Bowyer, K.W., Krumdick, M., et al: ‘Recognition of image-orientation-based iris spoofing’, IEEE Trans. Inf. Forensics Sec., 2017, 12, (9), pp. 21842196.
    43. 43)
      • 43. Yin, Y., Liu, L., Sun, X.: ‘SDUMLA-HMT: A multimodal biometric database’. The 6th Chinese Conf. on Biometric Recognition (CCBR 2011), volume 7098 of Springer Lecture Notes on Computer Science, 2011, pp. 260268.
    44. 44)
      • 44. Kirchgasser, S., Uhl, A.: ‘Template ageing and quality analysis in time-span separated fingerprint data’. Proc. of the IEEE Int. Conf. on Identity, Security and Behavior Analysis (ISBA ‘17), New Delhi, India, 2017, pp. 18.
    45. 45)
      • 45. Kirchgasser, S., Uhl, A.: ‘Template ageing in non-minutiae fingerprint recognition’. Proc. of the Int. Workshop on Biometrics and Forensics (IWBF ‘17), Coventry, UK, 2017, pp. 16.
    46. 46)
      • 46. Ton, B.T., Veldhuis, R.N.J.: ‘A high quality finger vascular pattern dataset collected using a custom designed capturing device’. Int. Conf. on Biometrics, ICB 2013. IEEE, 2013.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-bmt.2017.0146
Loading

Related content

content/journals/10.1049/iet-bmt.2017.0146
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address