http://iet.metastore.ingenta.com
1887

3D discrete wavelet transform-based feature extraction for hyperspectral face recognition

3D discrete wavelet transform-based feature extraction for hyperspectral face recognition

For access to this article, please select a purchase option:

Buy article PDF
£12.50
(plus tax if applicable)
Buy Knowledge Pack
10 articles for £75.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
IET Biometrics — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

Facial hyperspectral image analysis has become a popular topic since it provides additional spectral information on subjects unlike the 2D face imagery which only has spatial information, hence it has an opportunity to improve face recognition accuracy. Three new methods for feature extraction for facial hyperspectral image classification are proposed. The methods employ a three-dimensional discrete wavelet transform (3D-DWT) to extract features from facial hyperspectral images. One of the advantages of 3D-DWT for feature extraction in hyperspectral images is that the horizontal, vertical and spectral information are processed in parallel. The most important characteristic of 3D-DWT is decomposing hyperspectral images into a set of spatio-spectral frequency subbands. The study proposes three methods using 3D-DWT for feature extraction: 3D-subband energy, 3D-subband overlapping cube and 3D-global energy. The k-NN and collaborative representation-based classifier (CRC) are used to process extracted feature vector datasets, where classification accuracies are evaluated by four test scenarios. The results under different test scenarios revealed that accuracy of proposed 3D-DWT methods is superior to alternative methods using spatio-spectral classification.

References

    1. 1)
      • 1. Shen, L., Zheng, S.: ‘Hyperspectral face recognition using 3D Gabor wavelets’. Int. Conf. Pattern Recognition, 2012, pp. 11271137.
    2. 2)
      • 2. Pan, Z., Healy, G., Prasad, M., et al: ‘Face recognition in hyperspectral images’, IEEE Trans. Pattern Anal. Mach. Intell., 2003, 25, (12), pp. 15521560.
    3. 3)
      • 3. Zhao, W., Chellappa, R., Phillips, P., et al: ‘Face recognition: a literature survey’, ACM Comput. Surv., 2003, 35, (4), pp. 399458.
    4. 4)
      • 4. Igarashi, T., Nishino, K., Nayar, S.K.: ‘The appearance of human skin: a survey’, Found. Trends Comput. Graph. Vis., 2007, 3, (1), pp. 195.
    5. 5)
      • 5. Di, W., Zhang, L., Zhang, D., et al: ‘Studied on hyperspectral face recognition in visible spectrum with feature band selection’, IEEE Trans. Syst. Man Cybern A, 2010, 40, (6), pp. 13541361.
    6. 6)
      • 6. Pan, Z., Healey, G., Tromberg, B.: ‘Comparison of spectral-only and spectral/spatial face recognition for personal identity verification’, EURASIP J. Adv Signal Process., 2009, 2009, (1), pp. 16.
    7. 7)
      • 7. Vartak, P., Bharadi, V.: ‘Hyperspectral face recognition by texture feature extraction using hybrid wavelets type I & II and Kekre wavelet transform’. Int. Conf. Computing Control and Automation, 2015.
    8. 8)
      • 8. PolyU-HSFD. Available at http://www.comp.polyu.edu.hk/~biometrics/hyper_face.htm, accessed 13 November 2015.
    9. 9)
      • 9. Uzair, M., Mahmood, A., Mian, A.: ‘Hyperspectral face recognition using 3D-DCT and partial least squares’. IEEE BMVC, 2013.
    10. 10)
      • 10. Uzair, M., Mahmood, A., Mian, A.: ‘Hyperspectral face recognition with spatiospectral information fusion and PLS regression’, IEEE Trans. Image Process., 2015, 24, (3), pp. 11271137.
    11. 11)
      • 11. Liang, J., Zhou, J., Gao, Y.: ‘3D local derivative pattern for hyperspectral face recognition’. 11th IEEE Int. Conf. Workshops on Automatic Face and Gesture Recognition (FG), 2015.
    12. 12)
      • 12. Chen, G., Sun, W., Xie, W.: ‘Hyperspectral face recognition with log-polar Fourier features and collaborative representation based voting classifiers’, IET Biomet., 2017, 6, (1), pp. 3642.
    13. 13)
      • 13. Cho, W., Jang, J., Koschan, A., et al: ‘Hyperspectral face recognition using improved inter-channel alignment based on qualitative prediction models’, Opt. Express, 2016, 24, (24), pp. 2763727662.
    14. 14)
      • 14. Sharma, V., Diba, A., Tuytelaars, T., et al: ‘Hyperspectral CNN for image classification & band selection, with application to face recognition’. Technical Report: KUL/ESAT/PSI/1604, 2016.
    15. 15)
      • 15. Sharma, V., Van Gool, L.: ‘Image-level classification in hyperspectral images using feature descriptors, with application to face recognition’, arXiv preprint arXiv: 1605.03428, 2016.
    16. 16)
      • 16. Wang, H., Bau, T.C., Healey, G.: ‘Expression-invariant face recognition in hyperspectral images’, Opt. Eng., 2014, 53, (10), pp. 103102103102.
    17. 17)
      • 17. CMU-HSFD. Available at http://www.consortium.ri.cmu.edu/hsagree/index.cgi, accessed 16 May 2016.
    18. 18)
      • 18. Khan, Z., Shafait, F., Mian, A.: ‘Joint group sparse PCA for compressed hyperspectral imaging’, IEEE Image Process., 2015, 24, (12), pp. 49344942.
    19. 19)
      • 19. Weeks, M., Bayoumi, M.A.: ‘Three-dimensional discrete wavelet transform architectures’, IEEE Trans. Signal Process., 2002, 50, (8), pp. 20502063.
    20. 20)
      • 20. Weeks, M.C.: ‘Architectures for the 3-D discrete wavelet transform’. PhD thesis, The University of Southwestern Louisiana, 1998.
    21. 21)
      • 21. Hsiang, S.T., Woods, J.W.: ‘Embedded video coding using invertible motion compensated 3-D subband/wavelet filter bank’, Signal Process. Image Commun., 2001, 16, (8), pp. 705724.
    22. 22)
      • 22. Yoo, H.Y., Lee, K., Kwon, B.: ‘Application of the 3D discrete wavelet transformation scheme to remotely sensed image classification’, Korean J. Remote Sens., 2007, 23, (5), pp. 355363.
    23. 23)
      • 23. Lustig, M., Donoho, D., Pauly, J.M.: ‘Sparse MRI: the application of compressed sensing for rapid MR imaging’, Magn. Reson. Med., 2007, 58, (6), pp. 11821195.
    24. 24)
      • 24. Guo, X., Huang, X., Zhang, L.: ‘Three-dimensional wavelet texture feature extraction and classification for multi/hyperspectral imagery’, IEEE Geosci. Remote Sens. Lett., 2014, 11, (12), pp. 21832187.
    25. 25)
      • 25. Ghasemzadeh, A., Demirel, H.: ‘Hyperspectral face recognition using 3D discrete wavelet transform’. IPTA, 2016.
    26. 26)
      • 26. Wandishin, M.S., Mullen, S.J.: ‘Multiclass ROC analysis’, Weather Forecast., 2009, 24, (2), pp. 530547.
    27. 27)
      • 27. Chen, G., Li, Ch., Sun, W.: ‘Hyperspectral face recognition via feature extraction and CRC-based classifier’, IET Image Process., 2017, 11, (4), pp. 266272.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-bmt.2017.0082
Loading

Related content

content/journals/10.1049/iet-bmt.2017.0082
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address