access icon free Human-level face verification with intra-personal factor analysis and deep face representation

The last two decades have seen an escalating interest in methods for large-scale unconstrained face recognition. While the promise of computer vision systems to efficiently and accurately verify and identify faces in naturally occurring circumstances still remains elusive, recent advances in deep learning are taking us closer to human-level recognition. In this study, the authors propose a new paradigm which employs deep features in a feature extractor and intra-personal factor analysis as a recogniser. The proposed new strategy represents the face changes of a person using identity specific components and the intra-personal variation through reinterpretation of a Bayesian generative factor analysis model. The authors employ the expectation-maximisation algorithm to calculate model parameters which cannot be observed directly. Recognition outcomes achieved through benchmarking on large-scale wild databases, Labeled Faces in the Wild (LFW) and Youtube Face (YTF), clearly prove that the proposed approach provides remarkable face verification performance improvement over state-of-the-art approaches.

Inspec keywords: expectation-maximisation algorithm; feature extraction; Bayes methods; face recognition; learning (artificial intelligence); computer vision; image representation

Other keywords: human-level face verification; large-scale unconstrained face recognition; deep learning; feature extractor; computer vision systems; human-level recognition; Labeled face recognition; intra-personal variation; deep features; deep face representation; remarkable face verification performance improvement; intrapersonal factor analysis; Youtube face recognition; recognition outcomes

Subjects: Other topics in statistics; Image recognition; Computer vision and image processing techniques; Other topics in statistics

References

    1. 1)
      • 21. Parkhi, O.M., Vedaldi, A., Zisserman, A.: ‘Deep face recognition’. British Machine Vision Conf., 2015, vol. 1, p. 6.
    2. 2)
      • 9. Huang, G.B., Ramesh, M., Berg, T., et al: ‘Labeled faces in the wild: a database for studying face recognition in unconstrained environments’, University of Massachusetts, Amherst, 2007, pp. 749.
    3. 3)
      • 29. Best-Rowden, L., Klare, B., Klontz, J., et al: ‘Video-to-video face matching: establishing a baseline for unconstrained face recognition’. Biometrics: Theory, Applications and Systems (BTAS), 2013, pp. 18.
    4. 4)
      • 6. Chen, D., Cao, X., Wang, L., et al: ‘Bayesian face revisited: A joint formulation’. European Conf. on Computer Vision (ECCV), October 2012, pp. 566579.
    5. 5)
      • 17. Schroff, F., Kalenichenko, D., Philbin, J.: ‘Facenet: a uni- fied embedding for face recognition and clustering’. Proc. of the IEEE Conf. on Computer Vision and Pattern Recognition (CVPR), 2015, pp. 815823.
    6. 6)
      • 3. Guillaumin, M., Verbeek, J., Schmid, C.: ‘Is that you? Metric learning approaches for face identification’. IEEE 12th int. Conf. on Computer Vision, 2009, pp. 498505.
    7. 7)
      • 1. Phillips, P.J., Scruggs, W.T., OToole, A.J., et al: ‘FRVT 2006 and ICE 2006 large-scale results’. NISTIR 7408, no. 1, National Institute of Standards and Technology, 2007.
    8. 8)
      • 8. Lu, C., Tang, X.: ‘Surpassing human-level face verification performance on LFW with GaussianFace’. arXiv preprint arXiv:1404.3840, 2014.
    9. 9)
      • 27. Hu, J., Lu, J., Tan, Y.P.: ‘Discriminative deep metric learning for face verification in the wild’. Proc. of the IEEE Conf. on Computer Vision and Pattern Recognition (CVPR), 2014, pp. 18751882.
    10. 10)
      • 19. Gong, D., Li, Z., Lin, D., et al: ‘Hidden factor analysis for age invariant face recognition’. Proc. of the IEEE Int. Conf. on Computer Vision, 2013, pp. 28722879.
    11. 11)
      • 15. Chen, D., Cao, X., Wen, F., et al: ‘Blessing of dimensionality: high-dimensional feature and its efficient compression for face verification’. Proc. of the IEEE Conf. on Computer Vision and Pattern Recognition (CVPR), 2013, pp. 30253032.
    12. 12)
      • 12. Zhu, Z., Luo, P., Wang, X., et al: ‘Recover canonical-view faces in the wild with deep neural networks’. arXiv preprint arXiv:1404.3543, 2014.
    13. 13)
      • 13. Damianou, A.C., Lawrence, N.D.: ‘Deep Gaussian processes’. arXiv preprint arXiv:1211.0358, 2012.
    14. 14)
      • 5. Huang, G.B., Lee, H., Learned-Miller, E.: ‘Learning hierarchical representations for face verification with convolutional deep belief networks’. IEEE Conf. on Computer Vision and Pattern Recognition (CVPR), 2012, pp. 25182525.
    15. 15)
      • 10. Wolf, L., Hassner, T., Maoz, I.: ‘Face recognition in unconstrained videos with matched background similarity’. Proc. of the IEEE Conf. on Computer Vision and Pattern Recognition (CVPR), 2011, pp. 529534.
    16. 16)
      • 11. Redner, R.A., Walker, H.F.: ‘Mixture densities, maximum likelihood and the em algorithm’, Soc. Ind. Appl. Math., 1984, 26, (2), pp. 195239.
    17. 17)
      • 7. Cao, X., Wipf, D., Wen, F., et al: ‘A practical transfer learning algorithm for face verification’. Proc. of the IEEE Int. Conf. on Computer Vision, 2013, pp. 32083215.
    18. 18)
      • 4. Cao, Z., Yin, Q., Tang, X., et al: ‘Face recognition with learning-based descriptor’. IEEE Conf. on Computer Vision and Pattern Recognition (CVPR), 2010, pp. 27072714.
    19. 19)
      • 20. Sun, Y., Wang, X., Tang, X.: ‘Deep learning face representation from predicting 10,000 classes’. Proc. of the IEEE Conf. on Computer Vision and Pattern Recognition (CVPR), Washington, DC, USA, 2014, pp. 18911898.
    20. 20)
      • 18. Bartlett, M.S., Movellan, J.R., Sejnowski, T.J.: ‘Face recognition by independent component analysis’, IEEE Trans. Neural Netw., 2002, 13, (6), pp. 14501464.
    21. 21)
      • 16. Taigman, Y., Yang, M., Ranzato, M., et al: ‘Deepface: closing the gap to humanlevel performance in face verification’. Proc. of the IEEE Conf. on Computer Vision and Pattern Recognition (CVPR), 2014, pp. 17011708.
    22. 22)
      • 28. Li, H., Hua, G., Shen, X., et al: ‘Eigen-pep for video face recognition’. Asian Conf. on Computer Vision (ACCV), November 2014, pp. 1733.
    23. 23)
      • 22. Dalal, N., Triggs, B.: ‘Histograms of oriented gradients for human detection’. IEEE Computer Society Conf. on Computer Vision and Pattern Recognition (CVPR), 2005, pp. 886893.
    24. 24)
      • 25. Berg, T., Belhumeur, P.N.: ‘Tom-vs-pete classifiers and identity-preserving alignment for face verification’. British Machine Vision Conf. (BMVC), September 2012, vol. 2, p. 7.
    25. 25)
      • 14. Krizhevsky, A., Sutskever, I., Hinton, G.E.: ‘Imagenet classification with deep convolutional neural networks’. Advances in Neural Information Processing Systems, 2012, pp. 10971105.
    26. 26)
      • 26. Hu, J., Lu, J., Yuan, J., et al: ‘Large margin multi-metric learning for face and kinship verification in the wild’. Asian Conf. on Computer Vision (ACCV), November 2014, pp. 252267.
    27. 27)
      • 24. Prince, S.J., Warrell, J., Elder, J.H., et al: ‘Tied factor analysis for face recognition across large pose differences’, IEEE Trans. Pattern Anal. Mach. Intell., 2008, 30, (6), pp. 970984.
    28. 28)
      • 23. LeCun, Y., Kavukcuoglu, K., Farabet, C., et al: ‘Convolutional networks and applications in vision’. Proc. 2010 IEEE Int. Symp. on Circuits and Systems (ISCAS), 2010, pp. 253256.
    29. 29)
      • 2. Kumar, N., Berg, A.C., Belhumeur, P.N., et al: ‘Attribute and simile classifiers for face verification’. IEEE 12th Int. Conf. on Computer Vision, 2009, pp. 365372.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-bmt.2017.0050
Loading

Related content

content/journals/10.1049/iet-bmt.2017.0050
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading