EEG-based biometric authentication modelling using incremental fuzzy-rough nearest neighbour technique

EEG-based biometric authentication modelling using incremental fuzzy-rough nearest neighbour technique

For access to this article, please select a purchase option:

Buy article PDF
(plus tax if applicable)
Buy Knowledge Pack
10 articles for £75.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Your details
Why are you recommending this title?
Select reason:
IET Biometrics — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

This paper proposes an Incremental Fuzzy-Rough Nearest Neighbour (IncFRNN) technique for biometric authentication modelling using feature extracted visual evoked. Only small training set is needed for model initialisation. The embedded heuristic update method adjusts the knowledge granules incrementally to maintain all representative electroencephalogram (EEG) signal patterns and eliminate those rarely used. It reshapes the personalized knowledge granules through insertion and deletion of a test object, based on similarity measures. A predefined window size can be used to reduce the overall processing time. This proposed algorithm was verified with test data from 37 healthy subjects. Signal pre-processing steps on segmentation, filtering and artefact rejection were carried out to improve the data quality before model building. The experimental paradigm was designed in three different conditions to evaluate the authentication performance of the IncFRNN technique against the benchmarked incremental K-Nearest Neighbour (KNN) technique. The performance was measured in terms of accuracy, area under the Receiver Operating Characteristic (ROC) curve (AUC) and Cohen's Kappa coefficient. The proposed IncFRNN technique is proven to be statistically better than the KNN technique in the controlled window size environment. Future work will focus on the use of dynamic data features to improve the robustness of the proposed model.


    1. 1)
      • 1. Albert, M. K.: ‘Instance-based learning algorithms’, Mach. Learn., 1991, 6, (1), pp. 3766.
    2. 2)
      • 2. Cauwenberghs, G., Poggio, T.: ‘Incremental and decremental support vector machine learning’, Adv. Neural Inf. Process. Syst., 2001, 13, pp. 409415.
    3. 3)
      • 3. Marcel, S., Millán, J.D.R.: ‘Person authentication using brainwaves (EEG) and maximum a posteriori model adaptation’, IEEE Trans. Pattern Anal. Mach. Intell., 2007, 29, (4), pp. 743752.
    4. 4)
      • 4. Hema, C.R., Paulraj, M.P., Kaur, H.: ‘Brain signatures: a modality for biometric authentication’. 2008 Int. Conf. Electronic Design, 2008, pp. 14.
    5. 5)
      • 5. He, C.: ‘Person authentication using EEG brainwave Signals’ (The University of British Columbia, 2007).
    6. 6)
      • 6. Palaniappan, R., Ravi, K.V.R.: ‘Improving visual evoked potential feature classification for person recognition using PCA and normalization’, Pattern Recognit. Lett., 2006, 27, pp. 726733.
    7. 7)
      • 7. Zuquete, A., Quintela, B., Silva Cunha, J.P.: ‘Biometric authentication using brain responses to visual stimuli’. Int. Conf. Bio-inspired Systems and Signal Processing, 2010, pp. 103112.
    8. 8)
      • 8. Liew, S.H., Choo, Y.H., Low, Y.F.: ‘Fuzzy-rough nearest neighbour classifier for person authentication using EEG signals’. iFUZZY 2013–2013 Int. Conf. Fuzzy Theory and its Applications, 2013, pp. 316321.
    9. 9)
      • 9. Liew, S.H., Choo, Y.H., Low, Y.F.: ‘Identifying visual evoked potential (VEP) electrodes setting for person authentication’, Int. J. Adv. Soft Comput. Appl., 2015, 7, (3), pp. 8599.
    10. 10)
      • 10. Švogor, I., Kišasondi, T.: ‘Two factor authentication using EEG augmented passwords’, in 34th International Conference on Information Technology Interfaces, 2012, pp. 373378.
    11. 11)
      • 11. Olesen, H., Klonovs, J., Petersen, C.K.: ‘Development of a mobile EEG-based feature extraction and classification system for biometric authentication’ (Aalborg University, Copenhagen, 2012).
    12. 12)
      • 12. Giraud-Carrier, C.: ‘A note on the utility of incremental learning’, AI Commun., 2000, 13, (4), pp. 19.
    13. 13)
      • 13. Geng, X., Smith-Miles, K.: ‘Incremental learning’, in Encycl. Biometrics, Springer US Publishers, 2015, pp. 912917.
    14. 14)
      • 14. Liu, D., Liang, D.: ‘Incremental learning researches on rough set theory: status and future’, Int. J. Rough Sets Data Anal., 2014, 1, (1), pp. 99112.
    15. 15)
      • 15. Yang, S.: ‘The use of EEG signals for biometric person recognition’, 2015.
    16. 16)
      • 16. Hassani, K., Lee, W.: ‘An incremental framework for classification of EEG signals using quantum particle swarm optimization’. in IEEE Int. Conf. Computational Intelligence and Virtual Environments for Measurement Systems and Applications (CIVEMSA), 2014, pp. 4045.
    17. 17)
      • 17. Jensen, R., Cornelis, C.: ‘Fuzzy-rough nearest neighbour classification and prediction’, Theor. Comput. Sci., 2011, 412, (42), pp. 58715884.
    18. 18)
      • 18. Qu, Y., Shen, Q., Mac Parthaláin, N., et al: ‘Fuzzy similarity-based nearest-neighbour classification as alternatives to their fuzzy-rough parallels’, Int. J. Approx. Reason., 2013, 54, (1), pp. 184195.
    19. 19)
      • 19. Brainard, D.H.: ‘The psychophysics toolbox’, Spatial Vis., 1997, 10, pp. 433436.
    20. 20)
      • 20. Baker, D.: ‘Arduino sound to TTL trigger for EEG’, 2013. Available at, accessed 09 April 2014.
    21. 21)
      • 21. Kisakye, H.S.: ‘Brain computer interfaces: OpenViBE as a platform for a p300 speller’ (Heilbronn University, 2012).
    22. 22)
      • 22. Teplan, M.: ‘Fundamentals of EEG measurement’, Meas. Sci. Rev., 2002, 2, (2), pp. 111.
    23. 23)
      • 23. Liew, S.H., Choo, Y.H., Low, Y.F., et al: ‘Comparing features extraction methods for person authentication using EEG signals’. Pattern Analysis, Intelligent Security and the Internet of Things, 2015, pp. 225235.
    24. 24)
      • 24. Hu, D.Y., Li, W., Chen, X.: ‘Feature extraction of motor imagery EEG signals based on wavelet packet decomposition’. The 2011 IEEE/ICME Int. Conf. Complex Medical Engineering, 2011, pp. 694697.
    25. 25)
      • 25. Hall, M.A.: ‘Correlation-based feature selection for discrete and numeric class machine learning’. Proceeding ICML ‘00 Proc. 17th Int. Conf. Machine Learning, 2000, pp. 359366.
    26. 26)
      • 26. Witten, I.H., Frank, E.: ‘WEKA Machine learning algorithms in java’, in Data Mining: Prac. Mach. Learn. Tools and Tech. with Java Imple., Morgan Kaufmann Publishers, 2000, pp. 265320.
    27. 27)
      • 27. Hassanat, A.B., Abbadi, M.A., Alhasanat, A.A.: ‘Solving the problem of the K parameter in the KNN classifier using an ensemble learning approach’, Int. J. Comput. Sci. Inf. Secur., 2014, 12, (8), pp. 3339.
    28. 28)
      • 28. Yazdani, A., Roodaki, A., Rezatofighi, S.H., et al: ‘Fisher linear discriminant based person identification using visual evoked potentials’. 2008 Ninth Int. Conf. Signal Processing, 2008, pp. 16771680.
    29. 29)
      • 29. McHugh, M.L.: ‘Inter-rater reliability: the Kappa statistic’, Biochem. Medica, 2012, 22, (3), pp. 276282.

Related content

This is a required field
Please enter a valid email address