Real-time AdaBoost cascade face tracker based on likelihood map and optical flow

Real-time AdaBoost cascade face tracker based on likelihood map and optical flow

For access to this article, please select a purchase option:

Buy eFirst article PDF
(plus tax if applicable)
Buy Knowledge Pack
10 articles for £75.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend to library

You must fill out fields marked with: *

Librarian details
Your details
Why are you recommending this title?
Select reason:
— Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

The authors present a novel face tracking approach where optical flow information is incorporated into a modified version of the Viola–Jones detection algorithm. In the original algorithm, detection is static, as information from previous frames is not considered; in addition, candidate windows have to pass all stages of the classification cascade, otherwise they are discarded as containing no face. In contrast, the proposed tracker preserves information about the number of classification stages passed by each window. Such information is used to build a likelihood map, which represents the probability of having a face located at that position. Tracking capabilities are provided by extrapolating the position of the likelihood map to the next frame by optical flow computation. The proposed algorithm works in real time on a standard laptop. The system is verified on the Boston Head Tracking Database, showing that the proposed algorithm outperforms the standard Viola–Jones detector in terms of detection rate and stability of the output bounding box, as well as including the capability to deal with occlusions. The authors also evaluate two recently published face detectors based on convolutional networks and deformable part models with their algorithm showing a comparable accuracy at a fraction of the computation time.

Related content

This is a required field
Please enter a valid email address