access icon free QUIS-CAMPI: an annotated multi-biometrics data feed from surveillance scenarios

The accuracy of biometric recognition in unconstrained scenarios has been a major concern for a large number of researchers. Despite such efforts, no system can recognise in a fully automated manner human beings in totally wild conditions such as in surveillance environments. Several sets of degraded data have been made available to the research community, where the reported performance by state-of-the-art algorithms is already saturated, suggesting that these sets do not reflect faithfully the conditions in such hard settings. To this end, the authors introduce the QUIS-CAMPI data feed, comprising samples automatically acquired by an outdoor visual surveillance system, with subjects on-the-move and at-a-distance (up to 50 m). Also, they supply a high-quality set of enrolment data. When compared to similar data sources, the major novelties of QUIS-CAMPI are: (i) biometric samples are acquired in a fully automatic way; (ii) it is an open dataset, i.e. the number of probe images and enroled subjects grow on a daily basis; and (iii) it contains multi-biometric traits. The ensemble properties of QUIS-CAMPI ensure that the data span a representative set of covariate factors of real-world scenarios, making it a valuable tool for developing and benchmarking biometric recognition algorithms capable of working in unconstrained scenarios.

Inspec keywords: biometrics (access control); object recognition

Other keywords: enrolment data; open dataset; covariate factors; biometric recognition accuracy; annotated multibiometrics data feed; unconstrained scenarios; QUIS-CAMPI data feed; surveillance scenarios; outdoor visual surveillance system; multibiometric traits; ACC; biometric recognition algorithms

Subjects: Data security; Image recognition; Computer vision and image processing techniques

References

    1. 1)
      • 51. Everingham, M., Sivic, J., Zisserman, A.: ‘Hello! My name is...buffy – automatic naming of characters in TV video’. Proc. British Machine Vision Conf., 2006.
    2. 2)
      • 25. Wong, Y., Chen, S., Mau, S., et al: ‘Patch-based probabilistic image quality assessment for face selection and improved video-based face recognition’. IEEE Computer Vision and Pattern Recognition Workshops, 2011, pp. 8188.
    3. 3)
      • 15. Phillips, P.J., Flynn, P.J., Scruggs, T., et al: ‘Overview of the face recognition grand challenge’. Conf. Computer Vision and Pattern Recognition, 2005, vol. 1, pp. 947954.
    4. 4)
      • 28. Fisher, R.: ‘Caviar dataset’. Available at http://homepages.inf.ed.ac.uk/rbf/CAVIARDATA1/, 2005, accessed 10th December 2016.
    5. 5)
      • 30. Hofmann, M., Schmidt, S.M., Rajagopalan, A., et al: ‘Combined face and gait recognition using alpha matte preprocessing’. Int. Conf. Biometrics, New Delhi, India, 2012, pp. 18.
    6. 6)
      • 36. Maeng, H., Liao, S., Kang, D., et al: ‘Nighttime face recognition at long distance: cross-distance and cross-spectral matching’. Asian Conf. Computer Vision, 2012, pp. 708721.
    7. 7)
      • 52. Chang, C.-C., Lin, C.-J.: ‘LibSVM: a library for support vector machines’, ACM Trans. Intell. Syst. Technol., 2011, 2, (3), pp. 127.
    8. 8)
      • 38. Park, U., Choi, H.-C., Jain, A., et al: ‘Face tracking and recognition at a distance: a coaxial and concentric PTZ camera system’, IEEE Trans. Inf. Forensics Sec., 2013, 8, (10), pp. 16651677.
    9. 9)
      • 49. Simonyan, K., Parkhi, O.M., Vedaldi, A., et al: ‘Fisher vector faces in the wild’. British Machine Vision Conf., 2013.
    10. 10)
      • 42. Neves, J.C., Proença, H.: ‘Dynamic camera scheduling for visual surveillance in crowded scenes using Markov random fields’. IEEE Conf. Advanced Video and Signal Based Surveillance, 2015.
    11. 11)
      • 45. Wu, C., Agarwal, S., Curless, B., et al: ‘Multicore bundle adjustment’. IEEE Conf. Computer Vision and Pattern Recognition, 2011, pp. 30573064.
    12. 12)
      • 12. Gross, R., Matthews, I., Cohn, J., et al: ‘Multi-pie’. IEEE Int. Conf. Automatic Face Gesture Recognition, 2008, pp. 18.
    13. 13)
      • 40. Choi, H.-C., Park, U., Jain, A.: ‘PTZ camera assisted face acquisition, tracking & recognition’. IEEE Int. Conf. Biometrics: Theory Applications and Systems, 2010, pp. 16.
    14. 14)
      • 27. Wang, T., Gong, S., Zhu, X., et al: ‘Chapter person re-identification by video ranking’. European Conf. Computer Vision, 2014, pp. 688703.
    15. 15)
      • 2. Klontz, J., Jain, A.: ‘A case study of automated face recognition: the Boston marathon bombings suspects’, IEEE Comput., 2013, 46, (11), pp. 9194.
    16. 16)
      • 26. Li, L., Nawaz, T., Ferryman, J.: ‘PETS 2015: datasets and challenge’. IEEE Int. Conf. Advanced Video and Signal Based Surveillance, 2015, pp. 16.
    17. 17)
      • 10. Phillips, P.J., Moon, H., Rizvi, S.A., et al: ‘The FERET evaluation methodology for face-recognition algorithms’, IEEE Trans. Pattern Anal. Mach. Intell., 2000, 22, (10), pp. 10901104.
    18. 18)
      • 39. Wheeler, F., Weiss, R., Tu, P.: ‘Face recognition at a distance system for surveillance applications’. IEEE Int. Conf. Biometrics: Theory Applications and Systems, 2010, pp. 18.
    19. 19)
      • 5. Zhu, X., Lei, Z., Yan, J., et al: ‘High-fidelity pose and expression normalization for face recognition in the wild’. IEEE Conf. Computer Vision and Pattern Recognition, 2015.
    20. 20)
      • 7. Neves, J., Proença, H.: ‘ICB-RW 2016: International Challenge on Biometric Recognition in the Wild’. Int. Conf. Biometrics, 2016, pp. 16.
    21. 21)
      • 43. Best-Rowden, L., Han, H., Otto, C., et al: ‘Unconstrained face recognition: identifying a person of interest from a media collection’, IEEE Trans. Inf. Forensics Sec., 2014, 9, (12), pp. 21442157.
    22. 22)
      • 4. Guillaumin, M., Verbeek, J., Schmid, C.: ‘Is that you? Metric learning approaches for face identification’. IEEE Int. Conf. Computer Vision, 2009, pp. 498505.
    23. 23)
      • 50. Lowe, D.G.: ‘Distinctive image features from scale-invariant keypoints’, Int. J. Comput. Vis., 2004, 60, (2), pp. 91110.
    24. 24)
      • 16. Proença, H., Filipe, S., Santos, R., et al: ‘The UBIRIS.v2: a database of visible wavelength images captured on-the-move and at-a-distance’, IEEE Trans. Pattern Anal. Mach. Intell., 2010, 32, (8), pp. 15291535.
    25. 25)
      • 46. Zhu, X., Ramanan, D.: ‘Face detection, pose estimation, and landmark localization in the wild’. IEEE Conf. Computer Vision and Pattern Recognition, 2012, pp. 28792886.
    26. 26)
      • 1. NeuroTechnology.: ‘Verilook surveillance’. Available at http://www.neurotechnology.com/verilook-surveillance.html, accessed on 10 March 2015.
    27. 27)
      • 22. Wang, T.Y., Kumar, A.: ‘Recognizing human faces under disguise and makeup’. IEEE Int. Conf. Identity, Security and Behavior Analysis (ISBA), 2016.
    28. 28)
      • 29. Vezzani, R., Cucchiara, R.: ‘Video surveillance online repository (VISOR): an integrated framework’, Multimedia Tools Appl.., 2010, 50, (2), pp. 359380.
    29. 29)
      • 6. Klare, B.F., Klein, B., Taborsky, E., et al: ‘Pushing the frontiers of unconstrained face detection and recognition: Iarpa Janus benchmark a’. IEEE Conf. Computer Vision and Pattern Recognition, 2015.
    30. 30)
      • 23. Wolf, L., Hassner, T., Maoz, I.: ‘Face recognition in unconstrained videos with matched background similarity’. IEEE Conf. Computer Vision and Pattern Recognition, 2011, pp. 529534.
    31. 31)
      • 41. Neves, J.C., Moreno, J.C., Barra, S., et al: ‘Acquiring high-resolution face images in outdoor environments: a master–slave calibration algorithm’. IEEE Int. Conf. Biometrics: Theory, Applications and Systems, 2015.
    32. 32)
      • 32. Shutler, J.D., Grant, M.G., Nixon, M.S., et al: ‘On a large sequence-based human gait database’, Appl. Sci. Soft Comput., 2004, pp. 339346.
    33. 33)
      • 48. Koestinger, M., Hirzer, M., Wohlhart, P., et al: ‘Large scale metric learning from equivalence constraints’. IEEE Int. Conf. Computer Vision and Pattern Recognition, 2012.
    34. 34)
      • 9. Martinez, A., Benavente, R.: ‘The AR face database’. Technical Report 24, 1998.
    35. 35)
      • 24. Grgic, M., Delac, K., Grgic, S.: ‘SCFACE – surveillance cameras face database’, Multimedia Tools Appl., 2011, 51, (3), pp. 863879.
    36. 36)
      • 31. Muramatsu, D., Iwama, H., Makihara, Y., et al: ‘Multi-view multi-modal person authentication from a single walking image sequence’. Int. Conf. Biometrics, 2013, pp. 18.
    37. 37)
      • 13. Matas, J., et al: ‘Comparison of face verification results on the XM2VTFS database’. Int. Conf. Pattern Recognition, 2000, vol. 4, pp. 858863.
    38. 38)
      • 3. Huang, G.B., Mattar, M., Berg, T., et al: ‘Labeled faces in the wild: a database for studying face recognition in unconstrained environments’. Workshop on Faces in ‘Real-Life’ Images: Detection, Alignment, and Recognition, Marseille, France, 2008.
    39. 39)
      • 11. Sim, T., Baker, S., Bsat, M.: ‘The CMU pose, illumination, and expression (pie) database’. IEEE Int. Conf. Automatic Face and Gesture Recognition, 2002, pp. 4651.
    40. 40)
      • 17. Padole, C., Proença, H.: ‘Compensating for pose and illumination in unconstrained periocular biometrics’, Int. J. Biometrics, 2013, 5, (3/4), pp. 336359.
    41. 41)
      • 37. Neves, J.C., Santos, G., Filipe, S., et al: ‘QUIS-CAMPI: extending in the wild biometric recognition to surveillance environments’. ICIAP 2015 Workshops, 2015, pp. 5968.
    42. 42)
      • 34. Iwama, H., Okumura, M., Makihara, Y., et al: ‘The OU-ISIR gait database comprising the large population dataset and performance evaluation of gait recognition’, IEEE Trans. Inf. Forensics Sec., 2012, 7, (5), pp. 15111521.
    43. 43)
      • 8. Samaria, F.S.: ‘Face recognition using hidden Markov models’, PhD thesis. University of Cambridge, 1994.
    44. 44)
      • 44. Tome, P., Fierrez, J., Vera-Rodriguez, R., et al: ‘Soft biometrics and their application in person recognition at a distance’, IEEE Trans. Inf. Forensics Sec., 2014, 9, (3), pp. 464475.
    45. 45)
      • 19. Huang, G.B., Learned-Miller, E.: ‘Labeled faces in the wild: updates and new reporting procedures’. Technical Report UM-CS-2014-003, University of Massachusetts, Amherst, 2014.
    46. 46)
      • 35. Phillips, P., Scruggs, W., O'Toole, A., et al: ‘FRVT 2006 and ice 2006 large-scale experimental results’, IEEE Trans. Pattern Anal. Mach. Intell., 2010, 32, (5), pp. 831846.
    47. 47)
      • 33. Yu, S., Tan, D., Tan, T.: ‘A framework for evaluating the effect of view angle, clothing and carrying condition on gait recognition’. Proc. Int. Conf. Pattern Recognition, 2006, pp. 441444.
    48. 48)
      • 18. Juefei-Xu, F., Savvides, M.: ‘Unconstrained periocular biometric acquisition and recognition using cots PTZ camera for uncooperative and non-cooperative subjects’. IEEE Workshop on Applications of Computer Vision, 2012, pp. 201208.
    49. 49)
      • 20. Kumar, N., Berg, A., Belhumeur, P., et al: ‘Attribute and simile classifiers for face verification’. IEEE Int. Conf. Computer Vision, 2009, pp. 365372.
    50. 50)
      • 14. Messer, K., et al: ‘Face authentication test on the BANCA database’. Int. Conf. Pattern Recognition, 2004, vol. 4, pp. 523532.
    51. 51)
      • 47. Davis, J.V., Kulis, B., Jain, P., et al: ‘Information-theoretic metric learning’. Int. Conf. Machine Learning, 2007, pp. 209216.
    52. 52)
      • 21. Ng, H.-W., Winkler, S.: ‘A data-driven approach to cleaning large face datasets’. IEEE Int. Conf. Image Processing, 2014, pp. 343347.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-bmt.2016.0178
Loading

Related content

content/journals/10.1049/iet-bmt.2016.0178
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading