Your browser does not support JavaScript!
http://iet.metastore.ingenta.com
1887

access icon free Combining Gabor filtering and classification dictionaries learning for fingerprint enhancement

This study presents a new method for enhancing fingerprint image. The process of the enhancement is divided into two phases: fingerprint is first enhanced using Gabor filtering and then the enhanced fingerprint can be further enhanced by using sparse representation with the priori information of ridge pattern based on classification dictionaries learning. In the second stage, first, the orientations of fingerprint patches are estimated by the weighted linear projection analysis and the quality of patches are evaluated by the coherence of point orientations. Second, the training patches are classified into eight groups based on their own orientations, and the training samples of each class are selected from candidate patches by their own quality. The corresponding classification dictionaries are learned in frequency domain. Finally, the fingerprint image is enhanced based on spectra diffusion by using classification dictionaries learning. The experiments are carried out using various fingerprint enhancement methods. The experiments show that the proposed method achieves better results in comparison with other methods, and can significantly improve the performance of automatic fingerprint identification system.

References

    1. 1)
      • 2. Yuan, C., Sun, X., Rui, L.: ‘Fingerprint liveness detection based on multi-scale LPQ and PCA’, China Commun., 2016, 13, (7), pp. 6065.
    2. 2)
      • 18. Perona, P.: ‘Orientation diffusions’, IEEE Trans. Image Process., 1998, 7, (3), pp. 457467.
    3. 3)
      • 12. Elad, M., Aharon, M.: ‘Image denoising via sparse and redundant representations over learned dictionaries’, IEEE Trans. Image Process., 2006, 15, (12), pp. 37363745.
    4. 4)
      • 17. Bazen, A.M., Gerez, S.H.: ‘Systematic methods for the computation of the directional fields and singular points of fingerprints’, IEEE Trans. Pattern Anal. Mach. Intell., 2002, 24, (7), pp. 905919.
    5. 5)
      • 15. Liu, M., Chen, X., Wang, X.: ‘Latent fingerprint enhancement via multi-scale patch based sparse representation’, IEEE Trans. Inf. Forensics Security, 2015, 10, (1), pp. 615.
    6. 6)
      • 10. Bruckstein, A.M., Donoho, D.L., Elad, M.: ‘From sparse solutions of systems of equations to sparse modeling of signals and images’, SIAM Rev., 2009, 51, (1), pp. 3481.
    7. 7)
      • 11. Wang, J., Lu, C., Wang, M., et al: ‘Robust face recognition via adaptive sparse representation’, IEEE Trans. Cybernet., 2014, 44, (12), pp. 23682378.
    8. 8)
      • 3. Xia, Z., Wang, X., Zhang, L., et al: ‘A privacy-preserving and copy-deterrence content-based image retrieval scheme in cloud computing’, IEEE Trans. Inf. Forensics Sec., 2016, 11, (11), pp. 25942608.
    9. 9)
      • 21. Bian, W.X., Luo, Y.L., Xu, D.Q., et al: ‘Fingerprint ridge orientation field reconstruction using the best quadratic approximation by orthogonal polynomials in two discrete variables’, Pattern Recognit., 2014, 47, (10), pp. 33043313.
    10. 10)
      • 6. Hong, L., Wan, Y., Jain, A.K.: ‘Fingerprint image enhancement: algorithm and performance evaluation’, IEEE Trans. Pattern Anal. Mach. Intell., 1998, 20, (8), pp. 777790.
    11. 11)
      • 22. Jain, A.K., Prabhakar, S., Hong, L., et al: ‘Filterbank-based fingerprint matching’, IEEE Trans. Image Process., 2000, 9, (5), pp. 846859.
    12. 12)
      • 25. Medina-Pérez, M.A., García-Borroto, M., Gutierrez-Rodríguez, A.E., et al: ‘Improving fingerprint verification using minutiae triplets’, Sensors, 2012, 12, (3), pp. 34183437.
    13. 13)
      • 5. Fronthaler, H., Kollreider, K., Bigun, J.: ‘Local features for enhancement and minutiae extraction in fingerprints’, IEEE Trans. Image Process, 2008, 17, (3), pp. 354363.
    14. 14)
      • 16. Bian, W.X., Ding, S.F., Xue, Y.: ‘Fingerprint image super resolution using sparse representation with ridge pattern prior by classification coupled dictionaries’, IET Biomet., 2016, doi: 10.1049/iet-bmt.2016.0097.
    15. 15)
      • 1. Zhou, Z., Yang, C., Chen, B., et al: ‘Effective and efficient image copy detection with resistance to arbitrary rotation’, IEICE Trans. Inf. Syst., 2016, E99-D, (6), pp. 15311540.
    16. 16)
      • 8. Chikkerur, S., Cartwright, A.N., Govindaraju, V.: ‘Fingerprint enhancement using STFT analysis’, Pattern Recognit., 2007, 40, (1), pp. 198211.
    17. 17)
      • 13. Kuang, Y., Zhang, L., Yi, Z.: ‘An adaptive rank-sparsity K-SVD algorithm for image sequence denoising’, Pattern Recognit. Lett., 2014, 45, pp. 4654.
    18. 18)
      • 14. Shao, G., Wu, Y., Yong, A., et al: ‘Fingerprint compression based on sparse representation’, IEEE Trans. Image Process., 2014, 23, (2), pp. 489501.
    19. 19)
      • 4. Zhou, Z., Wang, Y., Wu Jonathan, Q.M., et al: ‘Effective and efficient global context verification for image copy detection’, IEEE Trans. Inf. Forensics Sec., 2017, 12, (1), pp. 4863.
    20. 20)
      • 9. Sutthiwichaiporn, P., Areekul, V.: ‘Adaptive boosted spectral filtering for progressive fingerprint enhancement’, Pattern Recognit., 2013, 46, pp. 24652486.
    21. 21)
      • 19. Jiang, X.D.: ‘On orientation and anisotropy estimation for online fingerprint authentication’, IEEE Trans. Signal Process., 2005, 53, (10), pp. 40384049.
    22. 22)
      • 23. Aharon, M., Elad, M., Bruckstein, A.M.: ‘K-SVD: An algorithm for designing of overcomplete dictionaries for sparse representations’, IEEE Trans. Signal Process., 2006, 54, (11), pp. 43114322.
    23. 23)
      • 7. Zahedi, M., Ghadi, O.R.: ‘Combining Gabor filter and FFT for fingerprint enhancement based on a regional adaption method and automatic segmentation’, Signal Image Video Process., 2015, 9, (2), pp. 267275.
    24. 24)
      • 24. Rubinstein, R., Zibulevsky, M., Elad, M.: ‘Efficient implementation of the K-SVD algorithm using batch orthogonal matching pursuit’, CS Technion, 2008, 40, (8), pp. 115.
    25. 25)
      • 20. Mei, Y., Cao, G., Sun, H.J., et al: ‘A systematic gradient-based method for the computation of fingerprint's orientation field’, Comput. Electr. Eng., 2012, 38, pp. 10351046.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-bmt.2016.0161
Loading

Related content

content/journals/10.1049/iet-bmt.2016.0161
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address